工业伺服节能改造,关于节电项目信息聚合页,聚合节电项目:节能产品、节能设备、节能技术、节能方案等信息;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
您的位置:首页 > 节电项目
节能改造关注问答
1、

电机能效提升的意义 节能推广分析及建议

中国中小型电机行业政策从国家层面主要就是推广节能高效电机。节能高效电机与普通电机相比,损耗平均下降20%、效率提高2%-7%;超高效电机则比节能高效电机效率平均再提高2%。电机系统节能对推行节能降耗战略的国策影响巨大。

为适应国民经济的发展要求,我国大力推广高效节能电机。高效节能电机是指通用标准型电动机具有高效率的电机。高效节能电机采用新型电机设计、新工艺及新材料,通过降低电磁能、热能和机械能的损耗,提高输出效率。

电机能效提升意义

业内人士指出,长期以来,我国电机寿命平均比国外低3%到5%,运行系统效率比国外低10%到20%。而在2013年中国电机保有量大约17亿千瓦,总耗电量为3万亿千瓦时,占全社会用电总量的64%、工业用电的75%。“如果电机系统的效率提高5%到8%,每年节约的电相当于两到三个三峡大坝的发电量。”中国节能协会常务副理事长王秦平称,超高效电动机的研发和生产,是提高电机系统效能的重要基础,铜转子电动机这种代表世界最高水平的电动机组建,将有利促进中国电动机能效的提升。

但国内高效电机标准未强制实施之时,企业认可度不高。美国2011年就已经强制执行IE3(效率等级),中国目前在强制推IE2标准。据魏华钧介绍,原来计划2015年推IE3标准,但国内电机行业没作好准备,个别企业没做到,多数企业做不到,所以推迟到2016年,比美国落后5年。

高效电机节能分析

为准确测试高效电机与普通电机的节能效果,有机构做过试验。选择了某电机生产企业YE3-160M1-2型号电动机与该企业早期生产的同规格Y160M1-2型号电动机分别在50%及75%负载率下进行了对比试验。

——试验数据说明

电机处于50%负载率运行时,Y160M1-2输出功率为5522.3W,YE3-160M1-2输出功率为5524.1W,可以等同认为在同一负载率下运行,其输入功率分别为6715.0W、6392.0W,转速分别为2965.4rpm、2976.7rpm。

电机处于75%负载率运行时,Y160M1-2输出功率为8284.6W,YE3-160M1-2输出功率为8265.0W,可以等同认为在同一负载率下运行,其输入功率分别为9679.0W、9270.0W,转速分别为2949.3rpm、2964.1rpm。

——节能效果分析

电动机处于50%负载率运行时,Y160M1-2电机效率为82.24%,YE3-160M1-2电机效率为86.42%,效率提高4.18个百分点;电动机处于75%负载率运行时,Y160M1-2电机效率为85.59%,YE3-160M1-2电机效率为89.16%,效率提高3.57个百分点。从现场测试效果来看,节能效果明显。

高效电机推广难题

1.对高效节能电机替代普通电机的认识不到位

电机作为拖动设备的动力装置,在大多数运行环境下,对其运行参数的要求不高,也不属于易损设备,很多上世纪六十年代生产的J系列电动机仍然在很多企业中正常运转。在市场经济下,有些企业目光短视,缩减成本进行采购,这与高效电机价格较高成了一对矛盾。只要能电机保证生产正常运行,大部分企业一般不会拿出额外的投资来更换电机,当然也更不会拿出超出普通电机很多的投资来更换高效电机,这是高效电机推广困难的主要因素。另外,信息不对称、观念错位、市场不规范、节能意识不强等也成为高效电机在我国推广的障碍。

2.对高效节能电机节能效果认知度不够

部分用能企业更换高效节能电机后反映,其用电量与原低效电机节能相比,节能效果并不明显,对高效电机节能率3-5%存在质疑。笔者以为,同等输出功率的更高一级能效电机的转差会减少20%-30%,转速比普通电机高10转以上,其拖动设备运行状态发生了一定改变,而对于大多数的用电设备,其电力消耗与转速的三次方成比例关系,例如,增加2%的运行速度将会造成增加8%的电力消耗,这就很容易抵消更换高效电机所预期的节能量。节能效果只考虑耗能,不考虑出力增加,是统计节能量偏小的重要因素。

3.高效电机价格偏高

高效电机从设计、材料和工艺上都采用了先进的技术措施,例如采用新型材料、合理的定转子槽数、风扇参数和正弦绕组等,来降低损耗,因此高效电机生产成本比普通电机高10-20%左右,有的甚至高50%,导致许多用户产生“节能不节钱”的观念。

4.电机销售模式决定高效电机推广困难重重

据有关资料显示,电机销售面向的三类客户其产品用量所占比分别为:终端用户占5%,代理商约占15%,下游产业的机械设备配套商占80%。由于由此可见,高效电机能否最终被市场接受,机械设备配套商的态度最为关键。由于大多数机械设备配套商并不是最终使用者,他们更多的是考虑如何节省一次性投入,提高自己终端产品在竞标中的价格优势,关注价格多于关注效率,缺乏主动采购高效电机的动力,而终端用户又没有决定采用高效电机的权力,这是高效电机推广的重要瓶颈。

5.电机系统节能技术改造合同能源管理项目推行困难

合同能源管理作为近几年兴起的一种市场化节能机制,对于促进企业提升能源利用效率发挥了积极作用。由于电机系统节能改造项目投资较大、节能量统计计量困难、回收期长等因素,有些节能服务公司仅仅以高效电机与普通电机的节电率来核算其回收期,不愿意开展电机系统技术改造的项目。

高效电机推广建议

据了解,未来工信部将充分利用财政补贴政策拉动高效电机市场。一方面,落实好节能产品惠民工程高效电机推广财政补贴政策;另一方面,逐步把选用高效电机作为高效风机、泵、压缩机等通用设备入围节能产品惠民工程的必要条件,延伸财政补助推广高效电机的产业链"。

高效节能电机采用新型电机设计、新工艺及新材料,通过降低电磁能、热能和机械能的损耗,提高输出效率,已经有比较成熟的技术,也就是说企业基本都能生产。然而,电机能效提升计划并未能如期完成。其中原因是长远利益和眼前利益的矛盾、短期投入和产出的矛盾、改革创新和因循守旧的对立,以及企业改革导致短期经济利益失衡的现实。但是中国改革开放的收获和经验告诉我们,革新一定是正确的。

产业前沿建议,综合工业先进国家和中国自己的实践经验,应该从这几个方面加大力度执行电机能效提升进程:第一,强制法规约束、奖惩分明、责任到位;第二,对经济(工业)发达地区提出更高的要求和执行目标;第三,加大财政补贴力度、重点企业重点补贴、超额企业额外补贴;第四、分类批量改造或建设全高效节能电机应用(试点)企业、变试点企业为标杆企业;第五,研究降低高效电机的生产成本;第六,尽量要求高标准甚至超标准,比如选择稀土永磁钕铁硼电机等。

2015年7月,工信部官员再度提出电机能效提升工作的重要性和紧迫性,要将这项工作作为当前乃至“十三五”工业节能减排领域的重要任务,并纳入工业绿色发展专项行动,下一步的重点方向是按照行业和领域用市场化的机制推进电机系统节能。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


>>详情点击
2、

电机的能耗等级分为几级,能效划分标准

电机的能耗等级分为几级,能效划分标准

电机是各种设备的动力驱动设备,常常应用在化工厂,煤矿,冶金,公用设施等多个行业和领域,是用电量最大的耗电机械。为了响应国家十二五计划,和企业自身经济利益考虑,节约用电,减少成本,选择一款高效节能电机是十分重要的。

但是我们在购买电机是却不知道他们的能效是如何划分的。那个如何判断电机的能效等级对我们来说就显得困难起来,不过经过我们下面的讲解,我们就会明白防爆电机的能效是如何划分了。

电机能效标准的划分标准在不同的时期按照国家的标准是不一样的,依据不同国家的标准也是不同的。仅以我们国家来说,电机能效等级的划分也是随着时间的变化会变化的。2006年我国发布了GB_18613-2006_电动机能效限定值及能效等级评定的标准。


GB_18613-2006_电动机能效限定值及能效等级

但是到了2012年,随着我国发展与国际化的同步,我们国家又发不了GB_18613-2012_电动机能效限定值及能效等级判断的标准,如下表


GB_18613-2012_电动机能效限定值及能效等级

我们不难看出在某些型号上会有下表的情况


就拿现在节能防爆电机YBX3来说,在GB_18613-2006_电动机能效限定值及能效标准中是一级能效,但到了GB_18613-2012_电动机能效限定值及能效等级标准中是二级能效。而YB2系列带电机在GB_18613-2006_电动机能效限定值及能效等级评定的标准中是二级能效类电机,但是按照2012的电机能耗划分标准,就属于三级能耗防爆电机了,属于高耗能电机。当然随着科技的发展,对防爆电机节能的要求的提高,能效标准可能还会变化的,不同时期判断方法的能效等级因此会不一样的。

现在我们以我们国家最新能效标准来说,目前按照GB_18613-2012_电动机能效限定值及能效等级划分标准要求,防爆电机的能效等级划分三级。其中一级能效是最节能的,二级能效防爆电机也是节能防爆电机,当然三级能效就不属于节能防爆电机了。当然在二级和二级以上的防爆电机(暂时一级能效三相异步防爆电动机国内还没有产品,YBX3是最佳选择)都是现在国家提倡使用的,有的地方国家会给予一定的政策补助。对于企业来说在节能用电上每年也会节约一大笔资金。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


>>详情点击
3、

步进电机通过联轴器带动滚珠丝杠转动实现对试件的拉伸压缩

系统结构组成及工作原理电子式蠕变持久试验机主要用来完成材料拉压、蠕变、松弛、持久、周期性加载等力学试验,它主要由3个部分构成,分别为运动模块、测量模块和控制模块。运动模块主要由步进电机、联轴器、丝杠螺母以及横梁夹具等组成。其工作原理如下:步进电机通过联轴器带动滚珠丝杠转动,由丝杠螺母传动驱动横梁作直线运动,并利用夹具实现对试件的拉伸压缩。测量模块主要由位移传感器,力传感器、引伸计、放大器以及AD采集卡等构成。

步进电机多用于开环控制,但为了提高试验机精度,作者利用位移传感器对其进行位置闭环控制,用来对开环控制误差进行有效的校正与补偿。力传感器和引伸计分别用来测量拉伸过程中的作用力和变形量。

控制模块主要由上位机、电机控制卡和细分驱动器等组成。上位机将采集的数据进行实时处理后,给电机控制卡发送位置、速度和加速度指令;电机控制卡按照接收到的指令,产生相应的脉冲信号;细分驱动器依据产生的脉冲信号,使步进电机实现平稳运转。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
4、

鼠笼式交流异步电动机起动技术

1引言

三相鼠笼式交流异步电动机因其结构简单,性能稳定及无需维护等特点,在各个行业中得到了广泛的应用,但由于其在起动过程中会产生过大的起动电流,会对电网和其他用电设备造成冲击,受电网容量限制和保护其他用电设备正常工作的需要,要在电机起动过程中采取必要的措施。总的来说,在不需要调速的场合,考虑经济的因素,异步电动机的起动可以有两种方法:直接起动和降压起动。

2直接起动

直接起动也就是全压起动,起动方法简单,但交流异步电动机的起动电流大,可达到额定电流的4~7倍,对于国产电动机的实际测量,某些笼形异步电动机甚至可达到8~12倍。过大的起动电流会造成电动机发热,影响电动机寿命;电动机绕组(特别是端部)在电动力作用下,会发生变形造成短路而烧坏电动机;过大电流会使线路压降增大,造成电网电压下降而影响到同一电网的其他用电设备的工作。所以,一般情况下规定,异步电动机的功率低于7.5kw时允许直接起动,如果功率大于7.5kw,在条件不允许的情况下,就需要采用其他方法进行起动。

3降压起动

3.1电阻降压起动

起动原理图如图1所示。q1和q2为接触器;r为起动电阻。

(1)简介

电阻降压起动就是通常所说的定子串电阻起动。在定子电路串联电阻,起动时电流会在电阻上产生压降,降低了电动机定子绕组上的电压,起动电流也从而得到减小。起动时,q1闭合,q2断开,起动完成后,闭合q2。

(2)优点

起动平稳,运行可靠,结构简单,如果采用电阻降压起动,在起动阶段功率因数较高。

(3)缺点

由于起动转矩和定子电压的平方成正比,所以起动时电压降低将造成起动转矩减小,适用于轻载和不频繁起动的场合;起动时电能损耗大,起动成本高。

3.2自耦变压器降压起动

起动原理图如图2所示,q1和q2为接触器。

(1)简介

自耦变压器降压起动利用自耦变压器降低加到电动机定子绕组的电压,以减小起动电流。自耦降压起动的起动电流参照式(1),起动电压参照式(2),起动转矩参照式(3)。

式中,i1为自耦变压器原边电流,即使用自耦变压器时的电机起动电流;

ist为电机直起时的起动电流;ux为自耦变压器起动时的起动电压;t为自耦变压器起动时的起动转矩;tst为电机直起时的起动转矩;w2、w1分别为自耦变压器副边和原边匝数。

为满足不同负载要求,自耦变压器的二次绕组一般有三个抽头分别为电源电压的40%、60%、80%(55%、64%、73%)。

(2)优点

三个电压抽头适合不同负载起动时选择;可以适用于较大容量电动机;

(3)缺点

体积大,质量大,价格高,需要维护检修。

3.3星-三角起动

起动原理图如图3所示,q1和q2为接触器。

(1)简介

星-三角起动要求电机每个绕组有两个出线端,共6个出线端。起动时接成星形,起动完成后必须为三角形。起动时连接成星形的定子绕组电压与电流只有三角形连接时的1/1.732。连接成星形起动时的线电流只有连接成三角形直接起动线电流的1/3;起动转矩和电压平方成正比,因此也是直接起动转矩的1/3。

(2)优点

体积小,重量轻,运行可靠,检修方便。

(3)缺点

只适用于正常运行时接成三角形的电动机;只适用于轻载或空载起动;起动电压是定值,不能根据负载调整。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
5、

初探起重机电机拖动系统的负载跟踪

在我国科学技术不断发展的今天,各种重型设备的应用性不断增强。起重机作为一种常见的、有效应用的设备,其可以有效的抬起重物,大大节省人力劳动。当然,要实现起重机长期稳定、安全、高效的应用,并不是非常容易的,需要对起重机电机拖动系统的负载跟踪予以合理的设计,有效的控制电机拖动系统,促使电机可以保持相对稳定的状态,为使起重机更好的运行创造条件。对此,本文就起重机电机拖动系统的负载跟踪进行分析和探讨。

引言:

起重机属于起重机械中的一种,其同时也是一种循环间歇运动的机械。对于起重机的应用,主要是将重物提起,将其平移到指定地点后降落物品,紧接着做反向运动,进行下一个重物的运输。起重机整个运作过程中,起重机电机拖动系统发挥巨大作用,其直接决定起重机能否将重物提起,并稳定的放在指定位置。当然,起重机电机拖动系统在具体运用的过程中容易受某些因素的影响,促使电机拖动系统运行不稳定,并且浪费电能。所以,加强起重机电机拖动系统的负载跟踪进行设计,有效的控制电机拖动系统,可以提升起重机电机拖动系统应用性。本文将从起重机电机拖动系统的力学方程分析展开,系统的探究起重机电机拖动系统的负载跟踪设计。

一、起重机电机拖动系统的动力学方程分析

对于起重机电机拖动系统的动力学方程的分析,需要结合起重机起升机构电机拖动系统图,依据相关的动力学原理,科学地、合理地分析,才能够详细地掌握整个起重机电机拖动系统的动力学方程,为后续准确的分析。设计起重机电机拖动系统的负载跟踪提供条件。对此,本文笔者参照某型号起重机起升机构电机拖动系统示意图(如图一所示),展开具体的分析。从图一可以知道分别为中间轴、卷筒、滑轮的传统效率。假设为起重机吊重物起升的速度、为起重机所吊重物的质量、为起重机吊具的质量、为起重机电机转子转动惯量、为制动轮和联轴器的转动惯量。根据动力学相关理论,可以得到关于起重机吊具上钢丝绳张力的公式,即:

在对起重机吊具上钢丝绳张力进行公式计算的过程中,因为是以动力学相关理论为基础,所以本文仅考虑吊具在提重物上升过程中所消耗的电能,对于其他因素所引起的能量消耗在此予以忽视。

二、起重机电机拖动系统的负载跟踪设计

综合上文起重机电机拖动系统的动力学方程式,对于起重机电机拖动系统的负载跟踪的设计主要是利用坐标轴分析的,这可以更为直接的分析电机拖动系统的负载跟踪,为实现起重机电机拖动系统可以稳定、有效应用创造条件。

对于起重机电机拖动系统的负载跟踪的设计,首先设计电机静止正交坐标系与旋转坐标系(如图三所示)。假设电机静止正交坐标系和以定子同步角速度,旋转得到两相旋转正交坐标系MOT,其中M轴与轴夹角为,且。那么,TM坐标系上电机转子磁链的矢量,将会与M轴某一点相交,从而可以实现整个系统的同步旋转。另外,由于在起重机电机拖动系统持续运作的过程中,电机转子磁链的矢量将会一直同M轴相交,这就意味着,转子磁链值与电子转子磁链矢量相等。

利用以上内容完成整个起重机电机拖动系统的负载跟踪设计。为了可以更加准确的、有效的、合理的、科学的完成起重机电机拖动系统的负载跟踪设计,笔者在此引入基于转差角频率的矢量变频控制系统原理图(如图四所示)。从转差角频率的矢量变频控制系统原理图可以了解电机转速计算中,需要运用到转速调节器对定子电流转矩分量予以计算,进而了解MT坐标系的同步旋转角速度。综合以上同步旋转角速度函数公式,以及起重机电机拖动系统实际情况,可以了解整个系统负载跟踪的应用需求。而积分器的因公可以测量出转角频率的矢量的变换角。利用矢量变换角可以得到电压励磁分量和转矩分量,相应的可以利用电压型逆变器对电压进行控制,从而实现起重机电机拖动系统的有效控制,促使电机稳定、安全、有效的运用。

结束语:

起重机电机拖动系统负载跟踪的设计是非常必要的,可以保证电机拖动系统相对稳定的运行,有效的节约电能。从起重机电机拖动系统负载跟踪控制的特点来看,电动机转子容易受到某些因素的影响。所以,在具体设计起重机电机拖动系统负载跟踪过程中,需要分析起重机电机拖动系统的动力学方程,了解转子电压、电流与磁链之间的关系。以此为依据构建电机静止正交坐标系与旋转坐标系,对电动机转子运作中负载转矩、定转速度等方面进行分析,从而科学、合理设计电机拖动系统负载跟踪,为保证起重机电机拖动系统稳定运作创造条件。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
6、

单台变频器拖动多台电机的可行性分析及改造策略

石油石化企业的生产强度比较大,一组电机会设置成多台互为备用,以确保电气系统安全可靠运行。但通常情况下整组电机仅设一台变频器用于拖动主电机,主备电机切换后,变频器不再对备用电机实施控制,整组电机便脱离变频调速系统,造成能源呆滞。本文基于经济学角度,通过分析调速控制系统的组成及工作原理,探索变频器“一带多”系统的经济性,可行性。最后阐述改造工程中采用单台变频器拖动多台电机运行时需注意的问题。

1变频器“一带多”的控制系统组成

变频器“一带多”调速控制系统主要包括三部分:信号采集及处理系统,负反馈闭环调速系统和自动检测切换控制系统。

现场环境可采集的信号有很多,诸如压力信号、温度信号、流量信号或液位信号等等。信号采集及处理系统即完成对就地信号的采集与处理,再通过相应的变送器以电流或电压信号传出,必要时为保证到达后续环节的信号质量需要加入信号隔离器。负反馈闭环调速系统是将整形好的信号传送至PID调节器,与设定值比较运算,得出的控制信号对变频器输出进行实时调节,使电机实现变频运行,实现闭环调速控制,进而更好的控制电机执行力。自动检测切换控制系统由可编程序控制器(PLC)及外围输入输出器件组成。系统上电,“手/自动”、“工/变频/检修”等操作命令及变送信号录入系统,核心元件开始依照指令自动扫描,运算,做出判断,遵循程序指标对主备电机实施自动切换控制,同时控制变频器的起动与停止。

2“一带多”变频调速控制系统的工作原理

2.1变频调速控制系统

PLC与变频器联合控制电机的转速及互换。如图1所示,PLC接收变送信号,将反馈得到的速度与给定的速度作比较,再经过高速技术模板运算,得出速度控制量,通过通讯总线将控制量传给变频器,变频器结合自身闭环控制作输出调整,输出信号驱动电机同时反馈PLC,实现调速控制。变频运行状态下主电机需要变频器供电,其他电机做工频运转或备用。如果变频供电电机停机,其相应信号采集处理单元切出系统。此时某台备用电机接到优先级高的变频指令,直接切到变频控制系统,实现变频调速供电,相应信号采集处理单元切入调节回路,参与闭环调速控制。当“工/变频/检修”切换开关处于“工频”或“检修”位置,变频调速控制将不被切入,电机始终处于工频运行或检修状态;当“手/自动”切至手动位置,可将负载与PLC、变频器全部脱开,直接实现工频运作。

2.2PLC工作原理

一旦PLC运行,运行期间重复执行输入采样、用户程序执行、输出刷新这3个阶段,如图2。输入采样阶段,PLC会依次对状态、数据进行扫描,存入相应I/O单元;采样输入结束,进入用户程序执行阶段,然后输出刷新。在这个周期性的运行过程中,数据发生变化,但执行过的单元数据信息不会变化。

2.3PLC与变频器之间通讯

PLC和变频器的通讯方式可以有USS,profibus-dp,MODBUS或PROFINET等多重选择。在此过程中,PLC为“主站”,变频器为“从站”,主站通过串行总线将不断刷新的控制命令传送给从站,从站接收命令后会调整控制输出,并将数据信息以报表形式回传送至主站,如此循环。

3变频器“一带多”的经济性

3.1直接效益

变频调速系统较高的调速精度和较宽的调速范围及“一带多”的控制方式,可以将每组控制回路总投资极大的节约,降低无功能耗的同时缩短资源回收期,以至寿命期内创造零成本经济效益。

3.2间接效益

1)变频调速控制系统可以改善因实际负荷与设计负荷偏离较大而造成的阀体前后压差大、润滑油温轴温高等现象,通过调整转速维持恒压等办法延长轴承、轴瓦的使用寿命。

2)PLC可以对电机实时监控,系统运行状况一步掌握,一旦出现异常现象可极早发现尽早解决,缩短检修时间,亦可避免因事故延迟造成不必要损失。

3)变频调速控制系统可实现主备电机自动切换,备用电机软启动,即便电机控制的流体里杂质较多容易堵塞与泄露,也不会产生大电流冲击电机,增加了电机使用年限。

4)变频器的保护功能齐全,PLC控制快速精确。对于正反转等特殊要求及启停较频繁的情况,两者实施联合保护可以进一步提升系统稳定性和可靠性。

4改造工程

4.1注意事项

变频器的“一拖一”已是成型技术,但在已经投产的装置上改造成“一带多”并非简单易事。首先是电缆走线,控制方案。因为多台电机会有不同的工况,调节参数、范围及控制要求。其次是控制柜安放地点设置。变频器体积及PLC控制柜需要满足电气相关标准。再次是系统总的配电容量。加装了变频器和控制柜,配电系统的供电容量是否可以满足使用要求。第四是电机本身性能是否可以在变频情况下启动,如绝缘等级、变压启动等。

4.2改造策略

本着改造工程量小,运行性能好,节能显着,投资回收期短等原则制定方案。

与电机匹配的变频器功率一定要选定稍高于或等于电机最大使用功率,且选型时等级也要选择高一些的,能满足装置与仪表配套,另外能够实行闭环控制的变频器。同时电机应用变频器时,由于电压变化率dv/dt增高,电机的绕组电压分布变得很不均匀,电机故障率增加,所以从长远经济效益上来讲,在采用变频器“一带多”的同时也要将较低的绝缘等级电机更换为绝缘等级高一些的电机,保证变频器的使用寿命同时保证电机的使用寿命。再者对电机实施必要的保护时,最好不要在变频器输出端应用熔断器,一旦一台电机出现故障,变频器会检测到输出缺相,然后报警停机,这样会将事故进一步扩大。当电机台数过多、线路太长的情况下,可增加输入输出电抗器等措施。另外需做好日常的维护工作。

5总结

采用变频器“一带多”调速控制系统可以将设备的使用寿命延长,将供配电系统的耗能降低,将电力系统安全经济性提升,但需要注意的事项也很多。夯实的理论基础,丰富的现场经验,严谨的工作态度可使变频调速控制系统运行出最完美的经济效益。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
7、

试论交流变频拖动系统

交流调速技术的基本控制原理很早就已经确立,转子电阻控制、串级调速等方式早已经实用化,但是长期以来,异步电机交流调速技术在稳定性、可靠性、控制性能和维修等方面的不足,使其使用范围受到限制;尤其是在像电梯等对控制性能、可靠性等要求非常高的系统中,一直都是直流电动机调速技术的天下。1965年以后,由于晶闸管及控制晶体管的进步,控制线绕式异步电动机的转子电压进行调速运转的静止串级调速、采用晶闸管逆变器控制鼠笼式异步电动机进行调速运转等方式逐渐实用化,逐渐奠定了以逆变器为主流的技术基础。而且直接采用电动机调速的技术逐渐取代了其它各种调速技术(如采用皮带的机械式传动、采用液压联轴节的液力传动等),成为调速技术的主流。

1.变频调速技术的基本原理

异步电机,特别是三相鼠笼式电机,由于结构简单牢固、价格便宜、运行可靠和无需维护等特点,在交流传动中得到了及为广泛的应用;异步电机的调速可分为两大类,一类是在电机旋转磁场同步转速,恒定的情况下调节电机的电机转差率;另一类是调节电机的同步转速。异步电动机的调压调速、转子串电阻调速、滑差离合器调速、斩波调速等,都是在电机旋转磁场同步转速恒定的情况下调节电机的转差率来实现电机调速,这类调速方法简单,易于实现,但效率较低。变极调速和变频调速则是在保持邃本不变的情况下,调节电机的同步转速,来实现电机调速,这类调速方法属于高效率的调速方法,特别是变频调速是异步电动机高效调速方法的典型,它既能实现异步电动机的无级调速,又能根据负载的特性不同,通过适当调节电压与频率之间的关系,可使电机始终运行在高效率区,并保证良好的运行特性。另外异步电动机采用变频调速技术还能显着改善起动性能,大幅度降低电机的起动电流,增加起动转矩,同时还能加宽调速范围、提高力力矩性能指标等。可以说,变频调速是目前为止异步电动机最为理想的调速方法。

2.变频器的结构

综合考虑液压电梯控制系统的特点,主要考虑的是低频力矩指标和四象限工作能力;在变频调速液压电梯速度控制中,采用电压源型交-直-交变频器。变频器主要由五部分组成:整流回路、逆变器、控制电路、制动组件和保护回路。

2.1整流回路

整流器由二极管或晶闸管组成,它负责将工频电源变成直流。在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器部分产生的脉动电流也使直流电压变动;为了抑制电压波动,可采用直流电抗和电容吸收脉动电压(电流)。

2.2逆变器

现在的交-直-交变频器在采用脉宽调制(PWM)技术后,把调压和调频的任务统一由变频器来完成,最常用的调节方案采用SPWM方式,采用参考正弦电压波与载频三角波来互相比较,决定主开关的导通时间来实现调压,利用脉冲宽度的改变来得到幅值不同的正弦基波电压。脉宽调制型变频器不仅可以把调压和调频的功能集于一身,而且还因采用不可控整流,简化了整流装置,降低了整流器的造价,同时还改善了系统的功率因数,加快了系统的动态响应,特别是通过采用适当的调制方法可以使变频器输出电压中谐波分量,尤其是低次谐波显着减少,从而使异步电动机的技术性能指标得到了大幅度地改善。

2.3制动组件

一般的电压源型交-直-交变频器为不可逆变频器,即变频器正常运行为两象限运转,电源只向异步电动机输出功率。对于减速时需要制动力的负载,功率会从异步电动机向逆变器回流,此时变频器需附加一套制动组件,以实现电机Ⅱ、Ⅳ象限制动;制动组件采用制动电阻的形式,当异步电动机工作于制动发电状态时(转差率为负),将产生再生能量,再生能量存于变频器平滑回路电容器中,使平滑回路中直流电压升高,当电压升高到一定值时,控制电路使制动部分的晶体管道通,再生能源流入电阻器被消耗掉。再生能量较大时,控制单元和电阻单元将分别设置。对于需要急加减速度,并且加减速度频繁的场合(电梯),或对于制动为主要目的场合(液压电梯下行),需采用可逆变频器,实现电动机的四象限运行,即双向电动和能量回馈制动运行。可逆型逆变器可以将电机的再生能源反馈回电网。

2.4控制回路

向异步电机供电的主回路提供控制信号的回路,称为控制回路。控制回路由由运算回路、电流电源检测回路、驱动回路、测速回路等组成。其中运算回路将外部的速度、转矩指令同检测回路的电流、电压信号进行比较运算,决定变频器的输出电源和频率。电压/电流检测回路采用霍耳CT、电阻等元件,并与主回路隔离进行电压、电流的检测。驱动回路驱动主回路元件的导通、关断,它与控制回路隔离。速度检测回路通过异步电机轴上的速度检测器(TG、PLG)或其他途径,将速度信号送回运算回路,对系统构成速度闭环控制。

2.5保护回路

变频器控制回路中的保护可分为变频器保护和异步电动机保护。变频器的保护功能有:瞬时过电流保护、过载保护、再生过电压保护、瞬时停电保护、接地过电流保护、冷风机异常保护等。对异步电动机的保护有:过载保护和超速(超频)保护。

3.变频调速的控制方式

3.1V/F控制

异步电动机的转速由电源频率和级数决定,所以改变频率可以控制电动机调速运行。但是频率的改变导致电动机内部阻抗也改变,因此单独改变频率将产生由弱励磁引起的转矩不足和由过励磁引起的磁饱和等现象,使电动机的功率因数和效率下降:V/F是一种开环控制方式,变频器在改变输出频率的同时,必须控制变频器的输出电压,即使V/F为常值。V/F控制系统结构简单,但是静、动态性能均不理想,尤其在低频时的特性较差,需要函数发生器适当提高定子电压来补偿磁通的减少;这种控制方式基本上不适合在液压电梯中应用。

3.2转差频率控制

转差频率控制方式是在V/F控制方式的基础上发展起来的,需要检测出电动机的转速,然后以电动机速度与转差频率的和来给定变频器输出频率。由于能够任意控制与转矩、电流有直接关系的转差频率,与V/F控制相比,其加减速特性和限制过电流的能力得到提高。另外,它具有速度控制器,利用速度反馈进行速度闭环控制可适用于自动控制系统。在V/F控制中,如果保持电动机气隙磁通一定,则电动机的转矩及电流由转差频率决定。如果增加控制电动机转差频率的功能,那么异步电动机产生的转矩就可以控制。转差频率是施加于电动机的交流电压频率与电动机速度(电气角频率)的差频率,在电动机上安装测速发电机(PG)等速度检测元件,就可以知道电动机的速度,此速度加上转差频率(与产生所要求的转矩相对应)就是变频器的输出频率。根据电动机产生的转矩大体与转差频率成比例的事实来控制电动机产生的转矩,就是转差频率控制的原理,这种控制方式具有较高的静动态性能。

3.3矢量控制

矢量控制的特点:

(1)矢量控制特性比其他控制特性优越,可实现与直流电机相同的控制特性;

(2)矢量控制变频调速响应速度快,调速范围广,特别是低速段的调速性能优越,可满足频繁急加、减速度运转和连续四象限运转等场合;

(3)可以进行转矩控制。在电机静止状态时,能控制产生静止转矩;

(4)控制运算中一般需要使用电动机的参数,需要电动机的速度反馈,一般要求电动机为专用电动机。由于矢量控制方式完美的控制特性,可以很好地满足液压电梯的低频力矩指标、静动态性能。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
8、

电厂电力拖动系统的节能研究

电厂做好电力拖动系统节能措施有一定的背景,它是电厂提高竞争力以及缓解资源紧缺形势的要求。文章从电动机角度出发,通过分析电动机节能措施提高电动拖动系统的节能性。

电厂电力拖动系统是电动机带动生产机械的运转系统,它是电厂发电的重要设备之一。随着发电厂生产过程自动化和机械化水平不断提高,电力拖动系统在电厂发电中的作用更大,电厂的许多主要设备和辅助设备都需要借助电动拖动系统。拖动系统在电厂发电中的作用增加也导致拖动系统成为电厂能源消耗的主要组成部分。据统计,电力拖动系统消耗的电能占电厂电能消耗总量的90%。因此,研究电厂电力拖动系统的节能情况,提高电力拖动系统的节能效果具有重要的意义。

1电厂电力拖动系统节能研究的重要性

1.1电厂提高竞争力的要求

近年来,我国不断推动电力企业市场化改革,电力行业的市场化程度不断提高,并逐步打破了电力行业的垄断局面,电力行业的竞争性和活力更强。例如我国21世纪放松电力市场价格管制,实行厂网分开,造成电力企业市场竞争显着提高。另外,在我国电力工业改革的推动下,市场竞争增加促使各个垂直垄断的企业实体开始发生转变,企业逐渐从垂直垄断体系脱离来,成为市场竞争的主体。在缺少垄断作用及市场竞争增强的背景下,电厂要增强竞争力,获取更多的市场份额,必须减少发电能耗,提高发电效率,降低成本。

1.2缓解资源紧缺形势的要求

改革开放以来,我国经济发展过程中消耗的大量资源,资源形势日益紧张。为此,近年来政府倡导节能减排,并加强对节能减排的监管。而电力企业属于高能耗和高污染行业,做好电厂节能减排工作对做好全国节能减排工作有着极大的促进作用。据统计,以电力行业为首的工业能耗以及污染物排放量占总数的70%。因此,有必要做好电厂电力拖动系统的节能研究,促进我国建设资源解决性、环境友好型社会。

2电力拖动系统节能措施

拖动系统主要由电动机、生产机械、电气控制系统、传动系统几部分构成,任一部分的运行情况对拖动系统的节能效果都会产生,尤其是电动机,电动机选择、供电电能质量、日常运行维护都对电力拖动系统的影响都较为显着,为此,本节从电动机角度分析电力拖动系统的节能措施。

2.1选择合适的电动机

首先,选择大小合适的电动机,电动机功率大于运行需求会导致电动机的负载率低于80%。其次,根据目标要求选择不同类型的电动机。例如基于转子效率,应选择鼠笼式电动机;基于功率因素考虑则应选择高速电动机;基于电压考虑则应选择高压电动机。其次,选择与运行速度匹配的电动机。电厂的风机类和泵类电动机能耗最高,电动机吸收能量的速度也更快,因而选择与运行速度匹配的电动机可降低电动机吸收的电能量。据统计,电动机运行速度超出额定值的2%,电动机多的电能消耗增加8%。最后,最好电动机的重绕和更换选择。电动机重绕可降低电动机的效率及可靠性,而更换电动机则涉及多项因素。针对电动机重绕和更换,可根据以下原则进行。如电动机功率超过20kW且运行时间超过15年,应更换电动机。如重绕费用比节能电动机的一半或更多,应选择更换电动机。电动机重绕时应选择高质量绕线,如符合ISO9000标准的清洁绕线。如重绕成本高于新式节能电动机的50%以上,应选择更换电动机。

2.2提供供电电能质量

一是控制电动机运行电压值,将电压控制在设计值内。电动机运行时电压允许出现10%的偏差,但是在电压长期偏高或偏低情况下,电动机的运行效率和功率因素更低,电动机的使用寿命也大大降低。二是减少三相电压不平衡状况,将三相电压不平衡度控制在1%以内。引起电压不平衡的主要因素包括某项加有单项负载、三根线大小不完全相同、线路故障。如三相电压不平衡度超过1%,将引起电动机定额量降级,进而影响电动机的运行效率。三是电动机处于高运行功率因素状态下运行。电厂发动机需要大量的无功功率,需采用补偿措施保障电动机运行功功率因素处于高水平状态,否则电动机容易因功率因素问题而降低运行效率。根据电厂的实际情况,电厂可通过并联电容器组方式,就地无功补偿。选择并联电容器组的同时要采取相应的措施使电容器组的投入快速而无冲击。此外,安装功率因数静补装置,进行滞相运行。

2.3做好电动机运行维护工作

维护人员要根据电动机生产厂商给出的建议和标准,制定电动机检测和维护计划,定期检测电动机运行状况,及时和排出发现电动机可能存在的故障,保证电动机可靠运行。例如以天或周为单位巡查电动机运行时的声音、振动和温度,以年为单位对电动机进行绕组和绕组对地阻抗测量,判断电动机是否出现接地故障。根据电动机使用情况进行润滑工作,选择高质量润滑油,润滑过程中要预防异物或水污染润滑部位。最后,建立电动机管理档案,记录每台电动机运行、测试数据和维修技术,以时间为顺序记录电动机绕组阻抗等参数测试结果,为电动机运行维护提供参考。

3结语

在电厂市场化程度不断提高、资源形势日益紧张以及政府倡导可持续经济发展战略的背景下,电厂必须重视电力拖动系统节能研究,做好电动机节能措施,不仅可以降低发电成本,提高电厂在市场中的竞争力,树立良好的市场形象。也会带来良好的社会效益,为我国绿色经济做出贡献。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
9、

基于可靠性状态监控的电力拖动监理研究

电力拖动作为占据主导地位的动力系统,检修水平的高低直接控制着生产系统的运行水平,从而决定收益水平。通过对检修体制的分析和审视,以实例对比,分析检修体制监理方法,提出在线监测法,提高了电力拖动系统的可靠性。

拖动即指以各种原动机带动工作机械(负荷)产生并完成运动,电力拖动即以电力为原动力的拖动系统。在各产业中,电力拖动提供了90%以上的原动力,在生产流程中占据基础而重要的核心点位。EPRI(ElectricPowerResearchInstitute,美国电力研究协会)2011年的报告指出:全美电力拖动系统消耗了19%的总能源,57%的电力能源;制造业中电力拖动消耗了70%以上的电能;过程工业中电力拖动消耗的电能占90%以上。每年度成本核算中,附加消耗分布为停产损失93.6%,附加能量消耗3.1%,电力拖动寿命降低1.2%,常规消耗2.1%。状态检测新方法的提出,有益于进一步降低维护及衍射费用,提升生产效率。

1电力拖动系统设备检修体制衍射

1.1事后维修RM/BM

特点是:“任其损坏”Reactive(Break-Down)Maintenance。

优点体现在:不必投资在状态监测上,不会出现过度维修,适用于少数非重点设备。缺点为:无法预测事故停机,产生设备二次损坏及灾难性后果,生产损失,高额维修费用,管理失控。

1.2预防维修PM/TDM

要点在于“定期体检”PreventiveMaintenance。优点体现在维修以可控制的方式在方便的时间进行,减少意外事故,有效避免灾难性事故,可更好的控制备件,节约资金。缺点体现在状态良好的设备也被频繁检修(维修过盛),维修导致的损伤可能大于维修的益处,仍存在计划外故障停机,没有针对不同设备进行优化与寿命分析。

1.3预测维修PdM

预测维修即PredictiveMaintenance,要点在于“没有故障就不修”。优点在于:减少意外停机,仅在需要时购买和使用所需备件,只需在适当时候进行维修。缺点在于:监测仪器、系统、服务、人员花费,不能延长设备寿命。

1.4主动维修PAM

即ProactiveMaintenance,要点在于“查明根源,精确维修,一切基于可靠性”。优点在于:设备寿命延长,设备可靠性增加,更少的故障及二次损坏,停机时间减少,总维护费用降低。缺点在于:监测仪器、系统、服务、人员花费,要求特殊技能,需要更多时间进行分析,全体员工改变观念

2状态监测朝向

2.1当前状况分析

EPRI报告中指出:一个新的资产管理的平台提高生产能力,依靠运行在收支平衡之上,生产中断不可容忍,世界级的生产运营需要可靠性维护。对应的管理策略应为合理利用现有设备,增加生产速度提高质量,增加有效生产时间,降低成本。维修部门从单纯的维修,逐渐转变成为确保企业生产能力的高级职能单元,维修费用占企业生产总成本的4%到14%,维修费用所占比例大于企业利润率。故障停机异常昂贵,远远超过维修费用。

2.2状态监测的目的

保护系统(保障运行,避免事故造成二次损伤)——预知维修(提前预警,减少非计划停机事件)——故障诊断(指导维修进程,实施精密维修)——根源分析(有目的地提高设备可靠性)。

2.3案例分析

美国总统轮船公司2001年8月16日安装检修状态监控系统。2001年8月21日TC1轴承失效(已使用10,000小时)。在海上更换轴承,耽搁时间。二次损伤,造成叶片和迷宫密封损伤(价值$180,000)包括产量损失与人工费用。到达港口后,更换整个轴系,浪费时间。

同样在轮船公司的案例中,预测维修经济效益评估可知,VTR714轴承每套USD20,000to25,000;VTR714轴系每套USD120,000to150,000。已知更换轴承推荐时间为10,000小时(16个月),17条船,实行状态监测4年,轴承更换时间由10,000小时提高到20,000(有些轴承达到30,000小时)。总的价值体现为:17×3台涡轮增压器xUSD20,000=USD1,020,000,其中未计算节省时间与人工的效益及二次损伤费用

3RCM

RCM战略即StrategyforRCM,包括设计与改造、设备与备件采购、备品备件库存保养、安装调试、操作与日常保养、运行调度、维修维护。衍射流程为设备改造—提高运行寿命—状态监测日常维护保养—状态监测—有计划的停机—定期维修—备用策略—事后维修。

RCM手段(InstrumentforRCM)包括红外诊断静态/动态电气诊断、机械振动分析、激光对中/现场动平衡、润滑油品分析、超声诊断、腐蚀检测/探伤和实现静态检测、动态巡检、在线监控

RCM收益(BenefitfromRCM)主要有提高产量(2-40%),减少维修费用(7-60%),提高产品质量(重新回炉生产&废品率减少5-90%),延长设备寿命(>1-10xlifeextension),减少零配件库存(10-60%),增加库存周转率(upto75%),减少成品库存,降低能耗(5-15%),提升生产安全及环境保护。

4故障分布与测试

4.1故障分布

根据EPRI的报告:电力拖动故障的53%源于机械原因,如轴承故障、不平衡、松动等;47%源于电气原因;这其中,10%源于转子,如铸件缺陷导致的不平衡气隙、断条等;37%源于定子绕组。阻抗不平衡导致的电力拖动系统效率的降低。阻抗不平衡导致功率因数的降低。阻抗不平衡导致电力拖动损耗。阻抗不平衡导致温度上升。附加的温升导致电力拖动系统寿命的降低。

4.2电气测试

静态电气测试SET包括:欧姆表/毫欧表、绝缘电阻计(DA/PI)、

高压绝缘测试仪、LCR测试仪、浪涌测试仪、静态电路分析(MCA)。

动态电气测试DET包括:电压表、安培表、功率表、数据采集器、电源质量分析仪、动态效率仪。

其他还有动态电信号分析(ESA)、动态机械测试DMT、红外分析、振动分析、超声诊断。

5电力拖动监测与管理系统的建立

维修策略的优化通过监控点的系统建立得以实现预知维修与监测进程,需要以下为电力拖动状态监测的时间间隔,以月为单位。台湾麦寮电厂拥有7台600MW火力发电力拖动组2台,12MW柴油发电力拖动组(备用)。实现的技术服务有SPMIntroduction(1998)、CMS用于涡轮增压机(1998)、便携式仪器A30-3(1999)、诊断服务(2001)。现在装备4台A30-3,整体监控点数7600点,远程监控2100点,“VCM+BMS”56点,“MG4toAMStoPRO46”软件72点。下一步装备6台Leonova,远程监控1445点,“MG4toAMStoPRO46”136点。通过系统的故障检点监测成形,有效地实现了检修管理技术的提升。

6结束语

电力拖动系统中检修水平的提升,除了依托于设备管理人员的技术水平外,通过在线检测方法,以先进的检测检修管理技术可以实现更加优化的资源配置和生产效率。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
友情链接友情链接