工业伺服节能改造,关于液压系统 伺服节能信息聚合页,专注于液压系统 伺服节能:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
您的位置:首页 > 液压系统 伺服节能

注塑机伺服节能改造

  注塑机工作原理  原定量泵(多为叶片泵)+ 异步(鼠笼式)电机的运行中,马达高速恒定持续运转,使油泵100%输出,当动作的速度越慢、动作的 时间越长、压力越大,潜在节能的幅度

6702018-06-28 09:34:30

查看详情

钢铁厂液压站节电改造方案

甲方:某某钢铁集团乙方:苏州徕卡节能电气技术有限公司项目名称:某某钢铁集团 2#线液压站设备的液压伺服同步控制系统和智能化控制节能系统改造项目,达成技术协议条款如下:一、总

2962018-06-25 14:34:32

查看详情

铝型材挤压机节能改造方案

一、项目总述某铝型材公司作为铝型材行业的领军者、企业管理的先驱者,在响应国家节能减排号召、开展能效管理工作方面拥有良好的管理基础和实施条件。本报告结合该公司的管理

2822018-06-25 14:35:10

查看详情

液压站伺服节能改造

液压站伺服节能改造 液压站工作原理电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后

2212018-06-28 09:31:14

查看详情

油压机节电节能改造方案

第一章 油压机现状介绍 1.1 原机台配置情况 贵司现有油压机47台,进行配置,改造前机台具体配置如下: 品牌 吨位 T 数量 台 电机功率 电机转速 油泵排量 系统流

2172018-06-25 14:13:47

查看详情

为什么注塑机伺服节能改造要比其他节能方式节电率要高?

为什么注塑机伺服节能改造要比其他节能方式节电率要高?注塑机节能改造的方法有很多,其中主流方式为:将原系统改造为伺服控制系统。为什么伺服控制系统要比其

2172018-08-15 17:00:09

查看详情

压铸机节能改造方案

第一章 压铸机现状介绍1.1 原机台配置情况现有压铸机20台进行配置,改造前机台具体配置如下: 品牌 型号 数量 油泵型号 电机转速 RMP 电机功

2072018-06-25 13:52:35

查看详情

工厂节能降耗措施有哪些?

工厂节能降耗措施有哪些?徕卡节能电气,专业从事工业节能15年,在工业节能方面,主要对生产车间内大型液压油压设备做伺服系统节能改造。工厂的节能降耗项目,节能改造

2072018-08-03 13:06:08

查看详情

液压机的压力不足压力上不去是什么原因造成的?

  液压机的压力不足压力上不去是什么原因造成的?  液压机的压力不足,或者压力上不去可以从以下几个点着手检查发现问题:  1、油泵效率较低,虽然油泵可以出油,但是效率较低

1912018-09-26 09:08:49

查看详情

空压机节能改造

  空压机节能改造  对空压机节能的改造方式主要有以下两种  1.变频调速方式  采取变频调速方式来降低空压机电动机的轴功率输出。改造之前,空压机的压力达到设定压力

1862018-06-25 16:42:26

查看详情

油压机伺服节能改造

  油压机伺服节能改造  油压机工作原理  电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、

1822018-06-25 16:26:02

查看详情

同步伺服控制系统

  同步伺服控制系统  同步伺服控制系统主要分为三大部件:伺服驱动系统、永磁同步电机、伺服齿轮泵。  伺服驱动系统特点:  采用CANBUS通讯可靠性高,响应速度快,实时性强

1802019-02-12 10:15:35

查看详情

注塑机料筒节能改造

  注塑机料筒节能改造  注塑机料筒节能通过注塑机干燥机高效节能系统进行节能。  该干燥机高效节能系统是将干燥机排出的热风,经高效节能转换系统,吸收热量排出湿气粉尘

1662018-06-29 16:22:33

查看详情

注塑机节能改造方案

某磨具企业,注塑机节能改造方案

1562018-06-25 13:43:47

查看详情

变频器+异步电机与伺服驱动器+同步电机的性能有什么区别?

  变频器+异步电机与伺服驱动器+同步电机的性能区别?  变频器:只接收与发出指令,控制对象只跟随变频器指令工作,但是被控制对象实际工作状况变频器是不知道的。  异步电

1562018-07-31 16:01:19

查看详情

工业空压机与锅炉怎样配合进行节能改造?

  随着社会发展,对能源需求剧增,为了进一步推进科学发展,减排降耗节能改造迫在眉睫。  企业内部空压机基本24小时持续运行供气,对企业能源消耗"做出重大贡献",如果空压机能

1332019-02-22 09:49:45

查看详情

空压机热回收项目节能改造

空压机热回收项目 内容 节能效果 备注 采暖 热水 产热水量(50℃升至60℃) 388吨/天 10℃温差 满足采暖面积

1202018-06-25 14:27:06

查看详情

专访苏州徕卡节能电气技术有限公司副总倪春林

  专访苏州徕卡节能电气技术有限公司副总倪春林  前言  有一句话说得非常好,没有传统的行业,只有传统的企业。这两个月,当我们的编辑团队深入近30家企业采访交流时,不论采

1192019-02-12 14:07:42

查看详情

徕卡节能发展自身技术优势,快速布局节能行业

  徕卡节能:加速节能产业高端化布局  继信息消费、光伏产业、基础设施建设投资之后,发展节能环保产业俨然成为了新一届政府稳增长组合拳中一支有生力量。2013年8月,国务院

1162019-02-20 16:03:03

查看详情

注塑机如何实现30%~80%节电率的节能改造

注塑机做节能改造,首选推荐“伺服控制系统”的节能改造。 注塑机,典型的周期性动作、变动负荷的生产设备。其一套完成的生产周期为“锁模、射胶、溶

1152018-08-21 14:28:55

查看详情

工业节能与大数据相结合,为节能事业发展指明方向

  徕卡节能:未来工业节能与大数据结合为发展方向   (徕卡节能大数据技术能源管理系统示意图)  节能减排作为我国当前重点发展产业,发展好坏事关我国当前“调结构,稳

1122019-02-18 11:28:11

查看详情

空压机余热回收节能改造

  空压机余热回收节能改造  空压机余热回收是一项非常环保的节能方式。空压机余热回收是将空压机的高温油经过热交换等技术处理把热量传递到冷水中,冷水被加热后流到保温

1082018-06-25 16:44:55

查看详情

注塑机伺服节能改造的原理大揭秘

  注塑机伺服节能改造的原理大揭秘   注塑机通过徕卡节能设备产品改造之后,正常节电率在:30%-80%  那注塑机节能改造,其改造原理是什么?  注塑机节能改造后的设备,系统

1042018-06-26 14:49:16

查看详情

缢生电缆塑料(昆山)有限公司-注塑机伺服改造

  公司名称:缢生电缆塑料(昆山)有限公司  项目名称: 注塑机伺服改造  合作模式:购销合同  项目内容: 镒生电线塑胶(昆山)有限公司是台湾在昆山投资的独资企业,以生产

1022018-07-05 11:21:27

查看详情

中央空调节能改造

    中央空调工作原理  一般来说,中央空调系统的大负载能力是按照天气热、负荷大的条件来设计,但实际上系统极少在这些极限条件下工作。根据有关资料统计,空调设备95%的

962018-06-25 16:35:37

查看详情

节能节电行业乘风破浪前行者:徕卡节能电气

  徕卡节能:节电产业是最具发展潜质的朝阳产业  中国的节电市场是一个沉睡的市场,据不完全统计,它具有万亿的巨大市场份额,谁能唤醒这个市场,谁就将获得无法估量的回报。据美

962019-02-20 10:01:28

查看详情

水泵节能改造

  水泵节能改造  离心泵节能方式有三种:  A. 水泵变频调速节能(比较常见)  B. 水泵叶轮改造节能(比较少)  C. 更换电机和水泵节电(减少水管阻力和选择合理扬程、流

952018-06-25 16:40:45

查看详情

注塑机节能改造,一般都在哪些部位做节能改造

  注塑机节能改造,一般都在哪些部位做节能改造?   现在主流做注塑机节能改造的,一般改的部位在:电机、油泵、干燥机,加热部位的加热圈节能。   注塑机动力部位伺服节能

942018-08-03 14:33:41

查看详情

注塑机做变频器改造,能省电么?与伺服系统相比有多大空间?

注塑机伺服节能改造相比变频器节能有哪些优势:1)控制精度 :交流伺服电机的控制精度由伺服同步电机轴后端的旋转编码器保证。2)低频特性:交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。

922018-07-27 15:43:05

查看详情

钢铁冶金行业节能改造工程项目

  钢铁冶金行业常用设备有不同类型的液压站,针对液压站进行伺服节能改造,节能降耗效果明显。  大型液压站一般使用行业为:冶金、有色金属加工、矿山、港口、石油化工及风力

912018-06-25 15:14:08

查看详情
节能改造关注问答
1、

电机电枢绕组损坏的测定

1.电枢绕组接地的检测

逐片用毫伏表检测。用低压直流电源(或电池)配合毫伏表来测出接地线圈。将毫伏表一端接于轴上,另一端接于换向片上,如毫伏表有偏转,则表示有接地故障,然后将毫伏表接换向片的另一端,依次移动,当表中指数为零时,则接于此片的线圈或换向片接地。短路测试器法。将电枢放在短路测试器上,再将毫伏表的一根引线放于换向器片上,另一根引线放于轴上,当毫伏表有读数时,则连接该片之线圈有接地处。

2.电枢绕组短路的测定

(1)电压降法。检查时,将有故障的电枢放在支架上,对相对两换向片间通入低压直流电,用直流毫伏表依次测量相邻两换向片间电压,若毫伏表读数呈周期性变化,表示接在换向片上的线圈是良好的;若读数突然变小或为零,则接于这两换向片间的线圈中就存在短路。对于四极的波绕组,由于绕组是经过两个线圈串联后再回到相邻的换向片上,若其中一个线圈发生短路时,接在相邻换向片上的毫伏表读数会降低近一半,便无法分辨是哪一个线圈短路,此时应将毫伏表跨界到距离相当一个换向器节距(Yk)的两个换向片上,即可只是出短路故障发生在哪个线圈上。

(2)毫伏表法。用一对探针将低压直流电加在相邻两个换向片间,再用另一对探针连接的直流毫伏表,测量其短路或接通的电动势,则电动势值小的一对换向片所连接的线圈,即是短路线圈。为防止损坏毫伏表,应先将接通电源的探针接到换向片上,之后再将毫伏表的探针接到换向片上;取下时顺序相反。

(3)短路测试器法。将电枢放在短路测试器上。当线圈或换向片有短路时,放在电枢槽口上的薄铁片即振动,并发出“吱吱”声。若为叠绕组时,薄铁片在两个槽口振动;若为波绕组时,薄铁片在2P个槽上振动。

3.电枢绕组开路的测定

毫伏表法。检查时,将电枢取出,将直流电源加到两相对的换向片上,毫伏表跨接在两相邻的换向片上。若毫伏表的读数突然升高,即表明接在该两换向片间的线圈开路。

短路测试器法。将电枢放在短路测试器上,以一只交流毫伏电压表检查上面两块换向片。转动电枢,继续检查相邻的换向片,也可逐次移动毫伏表的引线。当毫伏表无读数时,即表明接至该两相邻换向片的线圈开路。也可用一条导线代替毫伏表,去短接两个相邻的换向片。当导线端无火花时,即表明该处线圈开路。

4.电枢绕组错接的检测

毫伏表法。电枢绕组错接于嵌反,常发生在重绕的电枢上。在单波和双叠绕组嵌线过程中,最易发生引线端放错位置,即将换向器节距搞错,其中分个别线圈的换向器节距接错及换向器节距全部接错。可用毫伏表检查换向片间的电压来确定接错的部位,如间隔一个线圈的两个线圈所接换向片间毫伏表均出现2倍于正常偏转的指示,而中间那个线圈却产生反向电动势,则为十字反接。或者说在换向片3、4之间测量时,若毫伏表指针反转,其它各处指示均正常,则表明换向片3、4间接反,纠正即可。

指南针法。用指南针沿通电的电枢绕组依次移动,若移动过程中指南针方向突然反向,则表明该处线圈接反。当用毫伏表或指南针检测各换向片间电压,其变化不规则,时有时无或指南针方向变动不定,则表明换向器节距全部接错,应重新放置。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

管道切割机控制中伺服电机的工作原理

在管道切割机控制系统中,测速辊和管编码器配合使用,将辊轮的角位移转化为电脉冲信号向PLC提供数字量信号,以转速的形式在人机界面中进行显示。

接近开关用于将切割焊枪移架路径限制在允许的范围内,防止切管长度设置错误,焊枪支架移位至丝杠固定端面并与之发生机械碰撞,对机构造成损坏。切割焊枪送气管道内置电磁球阀,由PLC控制接触器的开关状态,实现送气阀的开启与关闭。

焊枪定位杆架上安装有位移传感器,启动丝杠电机,减速器带动丝杠旋转。同时,焊枪定位杆架开始沿平行于管道轴线方向向前(后)移动,当其移动到接近管道一端面时,关闭丝杠电机。调整焊枪枪头至管道端面合适切割点位置,设置传感器初始位移为0,完成切割焊枪的初始化定位工作。

在人机界面中设定好托辊转速以及管道切割长度,经PLC运算指令线性运算后自动转化为伺服电机设定的脉冲数。工作时,伺服电机每接受一个脉冲就会旋转一定角度。与此同时,伺服电机每旋转一个角度,都会发出对应数量的脉冲,和伺服电机接受的脉冲形成闭环控制。从而控制丝杠转动圈数和主动托辊的转速,达到精确控制切割焊枪每次移位距离和所切割管道转速距离。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


3、

电动机直接启动严重影响电动机的绝缘性能和使用寿命


风机运行中实际风量仅为额定风量的一部分,风机远离额定工作点运行,其实际运行效率很低,能耗浪费问题严重。由于挡板的存在,挡板前后存在压差,消耗了很大一部分能量,同时加大了对管道和风机的磨损。采用人工方式来调节挡板,操作麻烦,实时性差。电动机直接启动,启动电流为额定电流的6~8倍,严重影响电动机的绝缘性能和使用寿命,并会对电网造成较大冲击。电动机运行功率因数最高为0.8,功率因数低,无功损耗大。

技术改造节能原理项目通过技术改造,新增高、低压变频器系统,以调节电动机运行频率(转速)的方式替代了原有的调节风门的运行方式,从而起到节省电能、提高功率因数、改善运行工艺的作用。从风机的运行曲线图来分析采用变频调速后的节能效果。

项目技术改造方案通过新增的高压变频器系统与低压变频器系统,使风机可以在变频运行状态和工频运行状态间进行切换,即使在变频器发生故障时也不会影响风机的运行,保证不因增加高压变频器系统与低压变频器系统而降低原有系统的整体可靠性,同时在变频运行时,调节电动机转速,达到节能效果。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


4、

基于MCF51EM256的智能电动机保护器的设计及应用

采用Freescale公司Coldfire-V0架构内核的32位处理器MCF51EM256芯片,设计了一款高性能的ARD2L智能电动机保护器,并对该保护器的硬件和软件设计方案进行详细介绍。该保护器集众多保护功能于一体,提高了电动机运行的可靠性,减少了因电动机运行故障带来的经济损失。

引言

现代工矿企业中,以电动机作为动力的比例占全部动力的90%以上,它们已是当今生产活动和日常生活中最主要的原动力和驱动装置[1,2],为此检测与保护电动机的正常运行有着非常重要的意义。保护器经历了热继电器、熔断器、电磁式电流继电器、模拟电子式电机保护器,最后发展到数字电子式电机保护器即当今的智能电机保护器。本文设计了一款针对电动机在运行过程中出现的起动超时、过载、欠载、短路、断相、不平衡、接地/漏电、堵转、阻塞、外部故障等情况进行保护的ARD2L智能电动机保护器(以下简称ARD2L),可有效提高电动机运行的安全性,降低生产损失,是传统热继电器的理想替代品[3]。

1硬件设计

ARD2L的硬件电路包括主控芯片MCU,频率信号、电流信号、零序电流信号采集电路,开关量输入模块,继电器输出模块,变送输出模块,RS-485通讯接口,人机交互单元(状态指示灯、数码管/液晶显示),硬件电路框图如图1所示。

1.1主控芯片

MCU芯片采用freescale公司的Coldfire-V0架构内核的32位处理器MCF51EM256,时钟频率最高可达50.33MHz,内置256K的Flash、16K的RAM、4个独立16位A/D通道、3路定时器、3路SCI通讯接口以及内置RTC时钟、I2C、SPI、KBI接口等多种资源,具有极高的性价比。

1.2电源

电源是设备能否正常、稳定、可靠工作的关键部分,ARD2L采用安科瑞的通用开关电源模块。该模块输入电压为AC85V~265V,输入频率45Hz~60Hz,具有多路隔离电压输出,满足多种功能对不同供电电压的要求。其输出电压稳定、故障率小,输出纹波<1%;电源输入部分设计加入压热敏电阻、TVS管、防反接二极管等器件,对过压、过流等有一定的保护作用,同时能使产品通过严酷的EMC测试。该模块经现场实际使用,具有很高的稳定性、可靠性和抗干扰能力[4]。

1.3信号采集电路

信号采集电路负责采集电流信号、频率信号和零序电流信号。其中,电流信号采用互感器隔离输入,将交流信号抬高后送入CPU进行软件差分运算,电流采样电路如图2所示。以A相6.3A规格为例,采用的电流互感器变比为100A:20mA,5P10保护型。该方案电流测量在1.2倍范围内达到0.5S精度,在8倍范围内满足5S精度,而其过载能力按8倍计算,即给互感器加上50.4A电流,通过取样电阻R1的电流为10.08mA,两端电压为0.886V。同时,给采样信号抬高电压UREF=1.2V,使交流信号的幅值大于零,便于A/D采样;在电路的输出端加入限压二极管,使输入电压限制在3.3V以下,能对A/D采样通道起到很好的保护作用。

频率采样电路如图3所示。该电路采用MCP6002双运放进行两级放大,初级放大倍数较小,且在初级与次级之间进行滤波处理,次级运放将交流信号整形为方波信号,通过边沿触发方式捕捉,然后在CPU内部计算测量频率。

1.4人机交互界面

人机交互界面的显示采用数码管或液晶两,用户可以根据实际需要选择显示方式,输入采用按键方式。其中,数码管显示采用动态扫描方式,其驱动电路采用74HC595和三极管构成;液晶显示采用拓普威公司LM12832BCW的128点阵中文液晶,其数据传输采用SPI串口,可极大地节省CPU资源。同时,LED和LCD显示采用同一个SPI接口控制,使得两种显示方式可以通用。

1.5控制模块

控制模块主要由开关量输入、输出组成,如图4所示。其中,开关量输入用于监测断路器、接触器的开关状态和采集现场的工业联锁状态,也可根据客户要求用于电动机的起停控制;开关量输出主要用于输出脱扣信号、报警信号和远程起/停信号。

1.6通讯/变送模块

通讯模块采用RS-485模块ModbusRTU通讯规约,能实现遥测、遥控、遥信等功能。而变送是将我们需要的电流信号转换为DC4~20mA模拟量输出,方便与PLC、PC等控制机组成网络系统,实现电动机运行的远程监控。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

变频电机轴电压与轴电流的产生机理分析


3.轴承模型与轴承电流的产生由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均由一个轴承支撑,其结构如图3所示。以其中一个轴承为例,轴承的滚道由内滚道与外滚道组成,当电机转动时,轴承中的滚珠被润滑油层包围,由于润滑油的绝缘作用,轴承滚道与滚珠之间形成电容,如图3b)所示。这两个电容在转子-定子回路中以串联形式存在(为便于分析,不考虑滚珠的阻抗),可以等效成一个电容cbi,i代表轴承中的第i个滚珠。对于整个轴承而言,各个滚珠与滚道之间的电容以并联形式存在。所以整个轴承内可以等效成一个电容cb。据对轴承的分析,轴承可用一个带有内部电感和电阻的开关来等效。当滚珠未与滚道接触时,开关断开,转子电压建立;当转子电压超过油膜门槛电压时,油膜击穿开关导通,转子电压迅速内放电,在轴承内形成较大放电电流。va、vb和vc为电机三相输入电压,l’、r’和c’为输入电压耦合到转子轴的等效集中参数,cg为crf和cb并联后的等效电容。当轴承滚珠和滚道接触或者轴承内油层被击穿时,cb不存在,此时cg仅代表转子轴对机壳的耦合电容。电容cb是一个多个变量的函数:cb(q,v,t,η,λ,λ,εr)[2]。其中q代表功率,v代表油膜运动速度,t代表温度,η代表润滑剂粘性,λ代表润滑剂添加剂,λ代表油层厚度,εr代表润滑剂介电常数。轴承电容cb与定子到转子耦合电容csr,比定子到机壳耦合电容csf和转子到机壳耦合电容crf小得多。这样一来,耦合到电机轴承上的电压便不至于过大,这是因为crf与cb并联后的电容比耦合回路中与之串联的csr大得多,而串联电容回路中,电容越大承受的电压反而越小。事实上,根据分布电容的特点,很大一部分共模电流是通过定子绕组与铁芯之间的耦合电容csf传到大地去的,因此轴承电流只是共模电流的一部分。从图4可看出,形成轴承电流有两种基本途径。一是由于分布电容的存在,定子绕组和轴承形成一个电压耦合回路,当绕组输入电压为高频pwm脉冲电压时,在这个耦合回路势必产生dv/dt电流,这个电流一部分经crf传到大地,另一部分经轴承电容cb传到大地,即形成所谓的dv/dt轴承电流,其大小与输入电压以及电机内分布参数有关。二是由于轴承电容的存在,电机轴上产生轴电压,当轴电压超过轴承油层的击穿电压时,轴承内外滚道相当于短路,从而在轴承上形成很大放电电流,即所谓的电火花加工(electricdischargemachining-edm)电流。另外,当电机在转动时,如果滚珠和滚道之间有接触,同样会在轴承上形成大的edm电流。为了定量edm及dv/dt电流对轴承的影响,轴承内的电流密度十分关键。建立电流密度需估计滚珠与滚道内表面的点接触区域。根据赫兹点接触理论(hertzianpointcontacttheory),轴承电气寿命可用如下公式求得[2]:eleclife(hrs)=(7)式中,代表轴承电流密度。一般而言,dv/dt电流对轴承寿命影响很小,而由edm产生的轴承电流密度很大,使得轴承寿命大大降低。另外,空载时轴承损坏程度反而比重载时大得多,这是因为重载时轴承接触面积增大,无形中减小了轴承电流密度。

4.轴电压与轴承电流的仿真分析为进一步讨论轴承电流与pwm逆变器输出电压特性以及电机端有无过电压之间的关系,本文对dv/dt电流与edm电流两种形式的轴承电流分别进行仿真分析,结果发现,轴承电流不仅与逆变器载波频率有关,且与逆变器输出脉冲电压的上升时间有关,同时当电机端出现过电压时轴承电流明显增加。先假定电缆长度为零,根据轴承电流的存在形式可知,dv/dt电流主要是由输入跳变电压引起,因此dv/dt电流大小与逆变器载波频率和电压上升时间有关。逆变器载波频率越高,一个正弦波周期内产生的dv/dt电流数量也就越多,但此时电流幅值不变。脉冲电压上升时间是影响dv/dt电流幅值的决定性因素,另外分布电容的大小也影响dv/dt电流幅值。而edm电流产生的直接原因是轴电压的存在,因此轴电压的大小决定了edm电流幅值,轴电压的大小决定于输入电压的大小及电机内分布电容的大小。虽然逆变器载波频率和脉冲电压上升时间都会影响轴电压的形状,但轴电压的峰值与二者都没有关系,因此edm电流与二者也没有本质的联系,这是edm电流与dv/dt电流最大区别之处。当然,edm电流还与轴承油层的击穿电压有关,击穿电压越高,产生的edm电流越大。为讨论方便,假设轴承击穿电压大于或等于轴电压。

4.1改变上升时间tr仿真得到不同上升时间的轴电压与轴承电流波形如图5所示,其中图a)和b)为轴电压波形,图c)和d)为轴承电流波形,电流波形中第一次出现振荡的为edm电流,其他为dv/dt电流。由分析可知,1)tr增大轴承电流减少,包括dv/dt电流与edm电流。尤其是dv/dt电流幅值减小十分明显,但tr对edm电流的影响不大,这主要是因为edm电流由轴电压以及轴承阻抗决定;2)当tr小于一定值(约为200ns)后,dv/dt电流甚至高于edm电流;3)改变上升时间对轴电压的影响不大;4)特殊现象:轴电压在电压击穿时出现两次振荡,tr不影响第一次振荡,但影响第二次振荡,且第二次振荡随着tr的上升而减少,其原因是轴承短路后定子绕组到转子的耦合路径依然存在,所以出现一个dv/dt电流振荡。

4.2改变耦合参数及轴承参数定子绕组对转子的耦合电容越大,轴电压越高,dv/dt电流与edm电流均增加;轴承电容减小,dv/dt电流减小;但edm电流基本不变,此时轴电压上升。其原因是:在共模电路中,轴电压是由定子绕组对转子铁心的电压耦合造成的,维持这一电压的存在靠轴承电容以及转子对机壳耦合电容。由于后两者并联,再与前者串联,因此轴电压按电容值进行分配,电容越大压降越小。一般情况下,轴承电容与转子对机壳耦合电容比定子绕组对转子耦合电容大得多。在只改变轴承电容的情况下,轴承电容越小,整个并联电容等效值下降,轴电压反而上升,由于轴承上的dv/dt电流与容抗及dv/dt成正比,在dv/dt不变时,容抗减小,dv/dt电流下降。仿真结果如图6所示。

5.抑制办法从前面的理论研究和仿真分析可以看出,电机轴承电流产生的一个主要原因是逆变器输出的高频脉冲具有过高的dv/dt前后沿,由此可知,抑制轴承电流的有效办法就是降低逆变器输出电压的dv/dt。但是,逆变器本身输出的脉冲电压上升时间是由功率器件的开关特性决定的,因此只能在逆变器输出端附加装置改变其输出电压的dv/dt。降低逆变器输出电压上升沿dv/dt的一个最直接的办法是在逆变器输出端串上大的电抗器,即可构成所谓的“正弦波滤波器”,逆变器输出的脉冲电压在经过大电抗器后成为完全的正弦波电压,这样便可以消除轴电压与轴承电流。但是这种办法的代价是电抗器的功率损耗大,体积大,造价高,在普通的变频调速系统中应用不是很合适。本文采用折中办法,在逆变器输出端串接电感值不大的电感以抑制电流的快速变化,同时在输出端线间设置rc电抗以吸收输出电压的高次谐波,这样可以适当降低输出脉冲电压上升沿的dv/dt值,达到抑制轴承电流的目的。逆变输出滤波器降低了电机输入脉冲电压的电压上升率,这样一来,电机内分布电容的电压耦合作用便会大大减弱,轴电压以及由此引起的edm电流都会下降,同时由于电压变化率引起的dv/dt电流也会明显减少,因此滤波器可以有效地抑制轴承电流的产生。图8给出了加入滤波器(未接地)前后的电机轴承电流仿真波形,其中,逆变器载波频率为5khz,脉冲电压上升时间为200ns,电缆长100m。从图中可以看出,无论edm电流还是dv/dt电流都明显减少。仿真中还发现,将滤波器接地,无论dv/dt电流还是edm电流相对不接地而言均显着减少,其原因是rc吸收高次谐波的作用更强,能够更好地改善电压波形。

6.在高频pwm脉冲输入下,电机内分布电容的电压耦合作用构成系统共模回路,从而引起轴电压与轴承电流问题。轴承电流主要以三种方式存在:dv/dt电流、edm电流和环路电流。轴电压的大小不仅与电机内各部分耦合电容参数有关,且与脉冲电压上升时间和幅值有关。本文着重讨论前两种方式的轴承电流。dv/dt电流主要与pwm的上升时间tr有关,tr越小dv/dt电流的幅值越大。逆变器载波频率越高,轴承电流中的dv/dt电流成分越多。edm电流出现存在一定的偶然性,只有当轴承润滑油层被击穿或者轴承内部发生接触才可能出现,其幅值主要取决于轴电压的大小。以降低脉冲电压上升率为原则,设计一种在逆变器输出端串小电感并辅以rc吸收网络达到抑制轴电压与轴承电流的目的,仿真结果验证了该方法的有效性。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

工业电机控制系统

电机消耗的能量几乎占全球电力的50%。随着能源成本的持续上涨,业内开始采用微处理器调速驱动器替代效率低下的固定速率电机和驱动器,这种新型电机控制技术与传统驱动器相比,能够使能耗平均降低30%以上。虽然调速电机提高了系统本身的成本,但是,考虑到电机能够节省的能量以及所增加的功能,只需短短几年即可挽回最初的投资成本。


通用电机设计

直流电机、无刷直流和交流感应电机是当今工业应用设计中最常见的电机。尽管每种类型的电机都有独特的性能,但基本工作原理类似。当一个导体通电时,例如线圈绕组,如果导体处于一个与其垂直的外部磁场内,导体将会受到一个与自身和外部磁场垂直的力。

直流电机:低成本和高精度驱动性能

直流电机是最先投入使用的电机类型,目前仍然以低开发成本和卓越的驱动性能得到普遍应用。在最简单的直流电机中,定子(即电机固定部件)为永久磁铁,转子(即电机的转动部件)上缠绕了电枢绕组,电枢绕组连接到机械换向开关,该开关控制绕组电流的导通和关闭。磁铁建立的磁通量与电枢电流相互作用,产生电磁扭矩,从而使电机做功。电机速度通过调整电枢绕组的直流电压进行控制。

根据具体应用的不同,可以采用全桥、半桥或一个简单的降压转换器驱动电枢绕组。这些转换器的开关通过脉宽调制(PWM)获得相应的电压。Maxim的高边或桥式驱动器IC,例如:MAX15024/MAX15025,可以用来驱动全桥或半桥电路的FET。

直流电机还广泛用于对速度、精度要求很高的伺服系统。为了满足速度和精度的要求,基于微处理器的闭环控制和转子位置非常关键。Maxim的MAX9641霍尔传感器能够用于提供转子的位置信息。

交流感应电机以简单、坚固耐用而著称,被广泛用于工业领域。最简单的交流电机就是一个变压器,原级电压连接到交流电压源,次级短路承载感应电流。“感应”电机的名称源于“感应次级电流”。定子载有一个三相绕组,转子设计简单,通常被称为“鼠笼”,其中,两端的铜或铝棒通过铸铝环短路。由于没有转子绕组和碳刷,这种电机的设计非常可靠。

工作在60Hz电压时,感应电机恒速运转。然而,当采用电源电路和基于微处理器的系统时,可以控制电机速度变化。变速驱动器由逆变器、信号调理器和基于微处理器的控制器组成。逆变器采用三个半桥,顶部和底部切换以互补方式控制。Maxim提供多种半桥驱动器,如MAX15024/MAX15025,可独立控制顶部和底部FET。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

鼠笼式交流异步电动机起动技术

1引言

三相鼠笼式交流异步电动机因其结构简单,性能稳定及无需维护等特点,在各个行业中得到了广泛的应用,但由于其在起动过程中会产生过大的起动电流,会对电网和其他用电设备造成冲击,受电网容量限制和保护其他用电设备正常工作的需要,要在电机起动过程中采取必要的措施。总的来说,在不需要调速的场合,考虑经济的因素,异步电动机的起动可以有两种方法:直接起动和降压起动。

2直接起动

直接起动也就是全压起动,起动方法简单,但交流异步电动机的起动电流大,可达到额定电流的4~7倍,对于国产电动机的实际测量,某些笼形异步电动机甚至可达到8~12倍。过大的起动电流会造成电动机发热,影响电动机寿命;电动机绕组(特别是端部)在电动力作用下,会发生变形造成短路而烧坏电动机;过大电流会使线路压降增大,造成电网电压下降而影响到同一电网的其他用电设备的工作。所以,一般情况下规定,异步电动机的功率低于7.5kw时允许直接起动,如果功率大于7.5kw,在条件不允许的情况下,就需要采用其他方法进行起动。

3降压起动

3.1电阻降压起动

起动原理图如图1所示。q1和q2为接触器;r为起动电阻。

(1)简介

电阻降压起动就是通常所说的定子串电阻起动。在定子电路串联电阻,起动时电流会在电阻上产生压降,降低了电动机定子绕组上的电压,起动电流也从而得到减小。起动时,q1闭合,q2断开,起动完成后,闭合q2。

(2)优点

起动平稳,运行可靠,结构简单,如果采用电阻降压起动,在起动阶段功率因数较高。

(3)缺点

由于起动转矩和定子电压的平方成正比,所以起动时电压降低将造成起动转矩减小,适用于轻载和不频繁起动的场合;起动时电能损耗大,起动成本高。

3.2自耦变压器降压起动

起动原理图如图2所示,q1和q2为接触器。

(1)简介

自耦变压器降压起动利用自耦变压器降低加到电动机定子绕组的电压,以减小起动电流。自耦降压起动的起动电流参照式(1),起动电压参照式(2),起动转矩参照式(3)。

式中,i1为自耦变压器原边电流,即使用自耦变压器时的电机起动电流;

ist为电机直起时的起动电流;ux为自耦变压器起动时的起动电压;t为自耦变压器起动时的起动转矩;tst为电机直起时的起动转矩;w2、w1分别为自耦变压器副边和原边匝数。

为满足不同负载要求,自耦变压器的二次绕组一般有三个抽头分别为电源电压的40%、60%、80%(55%、64%、73%)。

(2)优点

三个电压抽头适合不同负载起动时选择;可以适用于较大容量电动机;

(3)缺点

体积大,质量大,价格高,需要维护检修。

3.3星-三角起动

起动原理图如图3所示,q1和q2为接触器。

(1)简介

星-三角起动要求电机每个绕组有两个出线端,共6个出线端。起动时接成星形,起动完成后必须为三角形。起动时连接成星形的定子绕组电压与电流只有三角形连接时的1/1.732。连接成星形起动时的线电流只有连接成三角形直接起动线电流的1/3;起动转矩和电压平方成正比,因此也是直接起动转矩的1/3。

(2)优点

体积小,重量轻,运行可靠,检修方便。

(3)缺点

只适用于正常运行时接成三角形的电动机;只适用于轻载或空载起动;起动电压是定值,不能根据负载调整。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

三相异步电动机的基本结构

电动机(Motors)是把电能转换成机械能的设备,它是利用通电线圈在磁场中受力转动的现象制成,分布于各个用户处,电动机按使用电源不同分为直流电动机和交流电动机,电力系统中的电动机大部分是交流电机,可以是同步电机或者是异步电机(电机定子磁场转速与转子旋转转速不保持同步速)。电动机主要由定子与转子组成。通电导线在磁场中受力运动的方向跟电流方向和磁感线(磁场方向)方向有关。电动机工作原理是磁场对电流受力的作用,使电动机转动。

(一)定子(静止部分)

1、定子铁心

作用:电机磁路的一部分,并在其上放置定子绕组。

构造:定子铁心一般由0.35~0.5毫米厚表面具有绝缘层的硅钢片冲制、叠压而成,在铁心的内圆冲有均匀分布的槽,用以嵌放定子绕组。

定子铁心槽型有以下几种:

半闭口型槽:电动机的效率和功率因数较高,但绕组嵌线和绝缘都较困难。一般用于小型低压电机中。

半开口型槽:可嵌放成型绕组,一般用于大型、中型低压电机。所谓成型绕组即绕组可事先经过绝缘处理后再放入槽内。

开口型槽:用以嵌放成型绕组,绝缘方法方便,主要用在高压电机中。

2、定子绕组

作用:是电动机的电路部分,通入三相交流电,产生旋转磁场。

构造:由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。

定子绕组的主要绝缘项目有以下三种:(保证绕组的各导电部分与铁心间的可靠绝缘以及绕组本身间的可靠绝缘)。

(1)对地绝缘:定子绕组整体与定子铁心间的绝缘。

(2)相间绝缘:各相定子绕组间的绝缘。

(3)匝间绝缘:每相定子绕组各线匝间的绝缘。

电动机接线盒内的接线:

电动机接线盒内都有一块接线板,三相绕组的六个线头排成上下两排,并规定上排三个接线桩自左至右排列的编号为1(U1)、2(V1)、3(W1),下排三个接线桩自左至右排列的编号为6(W2)、4(U2)、5(V2),.将三相绕组接成星形接法或三角形接法。凡制造和维修时均应按这个序号排列。

3、机座

作用:固定定子铁心与前后端盖以支撑转子,并起防护、散热等作用。

构造:机座通常为铸铁件,大型异步电动机机座一般用钢板焊成,微型电动机的机座采用铸铝件。封闭式电机的机座外面有散热筋以增加散热面积,防护式电机的机座两端端盖开有通风孔,使电动机内外的空气可直接对流,以利于散热。

(二)转子(旋转部分)

1、三相异步电动机的转子铁心:

作用:作为电机磁路的一部分以及在铁心槽内放置转子绕组。

构造:所用材料与定子一样,由0.5毫米厚的硅钢片冲制、叠压而成,硅钢片外圆冲有均匀分布的孔,用来安置转子绕组。通常用定子铁心冲落后的硅钢片内圆来冲制转子铁心。一般小型异步电动机的转子铁心直接压装在转轴上,大、中型异步电动机(转子直径在300~400毫米以上)的转子铁心则借助与转子支架压在转轴上。

2、三相异步电动机的转子绕组

作用:切割定子旋转磁场产生感应电动势及电流,并形成电磁转矩而使电动机旋转。

构造:分为鼠笼式转子和绕线式转子。

(1)鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的端环组成。若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组。小型笼型电动机采用铸铝转子绕组,对于100KW以上的电动机采用铜条和铜端环焊接而成。鼠笼转子分为:阻抗型转子、单鼠笼型转子、双鼠笼型转子、深槽式转子几种,起动转矩等特性各有不同。

(2)绕线式转子:绕线转子绕组与定子绕组相似,也是一个对称的三相绕组,一般接成星形,三个出线头接到转轴的三个集流环上,再通过电刷与外电路联接。

特点:结构较复杂,故绕线式电动机的应用不如鼠笼式电动机广泛。但通过集流环和电刷在转子绕组回路中串入附加电阻等元件,用以改善异步电动机的起、制动性能及调速性能,故在要求一定范围内进行平滑调速的设备,如吊车、电梯、空气压缩机等上面采用。

(三)三相异步电动机的其它附件

1、端盖:支撑作用。

2、轴承:连接转动部分与不动部分。

3、轴承端盖:保护轴承。

4、风扇:冷却电动机。

三相异步电动机型号字母表示的含义:

J——异步电动机;O——封闭;L——铝线缠组;

W——户外;Z——冶金起重;Q——高起动转轮;

D——多速;B——防爆;R一绕线式;

S——双鼠笼;K一—高速;H——高转差率。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

煤矿电机拖动系统变频节能系统研究

随着电力电子技术、计算机技术、电力通信技术等的进一步发展,变频调速节能技术得到迅速发展且在工程实际应用中发挥了良好的应用效果。高性能的变频调速节能装置设备已被大量地引入到煤矿、钢厂、电厂等工业领域。通过大量研究和实践工作可知,交流电机采用变频调速技术升级改造后其通常可以获得30%~65%的节电效益。在煤矿开采过程中,随着井下开采和掘进的不断延伸,矿井巷道也变得越来越长,为了满足井下通风需求,需要增加通风风机的功率容量,这样大功率的电机直接起动对煤矿配电网冲击非常大,加上井下作业面需求风量波动较大,采用常规继电器直接控制方式会导致大量电能资源浪费。目前,大功率交流电机采用变频调速技术进行升级改造,已成为当代电机节能调速控制的潮流,其节能节电效果十分明显,加上科学技术的进一步发展,大功率、高电压变频器的制造成本也在明显降低,变频器起动性能和调速平稳性能得到大大提高,减少了电机起动对煤矿配电网的冲击。因此,结合煤矿井下通风系统的实际情况,采取变频调速技术对原电机控制系统进行技术升级改造,就显得非常有意义。

1电机变频调速控制原理

煤矿井下通信系统中风机电机拖动系统,由于受当时建设技术水平和综合投资资金的制约,存在电源浪费严重等问题。采取基于PLC与变频器的变频调速技术升级改造,可以达到节能降耗的目的。电机拖动系统的节能通常有两种方法,一种是直接采用节能电机,如永磁同步电机;另一种是采用变频调速等控制系统来动态调节电机输入电源频率,达到风机拖动系统输入与输出间的实时动态平衡,进而达到电机调节运行节能降耗的目的。基于PLC与变频器的电机变频调速控制系统具有体积小、重量轻、起动转矩大、控制精度高、功能强、可靠性高、操作维护简单便捷、兼容性强等优点,要明显优于以往常规电机调控模式,使用它除了具备调速稳定可靠的优点外,还可以节约大量电能资源。

风机电机的输出转速(转矩)同电机输入电源频率、转差率以及电机磁极对数三个因素有直接关系。电机输出转速可以表示为:

(1)

式(1)中:为电机的磁极对数;为电机运行实时电源频率;为滑差。

从式(1)可知,对于交流电机拖动系统而言,要实现电机拖动系统在实际调节运行过程中,具有较高调控稳定精确性和节能经济性,可以采取三种方法,即改变电机的磁极对数p、通过内部转子串联电阻等改变电机的滑差率s、改变电机实时电源频率f。改变电机磁极对数p和滑差率s,均需要改变电机内部结构,这在很大程度上受到电机制造工艺、生产技术等因素的制约。而调节电机输入电源的频率f,不仅不需要改变电机的内部结构,而且只需要外加变频器作为电机输入电源的调控单元,就能完成对电机控制系统的动态调节。同时采用变频调速后,能够经过变频器和PLC的动态调控,使整个电机拖动系统长期处于最优工况,达到节能降耗的目的。从技术性、调节运行节能经济性等方面来看,变频调速控制较其他节能方案在可行性、可靠性、精确性等方面更加优越,是电机节能降耗工程中常采用的技术措施。

2电机拖动系统变频调速节能改造的技术要点和功能效果

煤矿通风系统中的风机电机拖动系统采用基于PLC与变频器的变频调速技术升级改造方案中,其节能改造实现的基本控制要求包括以下两个方面:

(1)节能控制系统应具备抑制电磁干扰的相应有效技术措施,能够防止非正弦波干扰风机电机拖动控制系统中的电脑主机、计时器、传感器等精密仪器设备的高效稳定工作,也就是采用变频调速控制系统进行技术升级改造过程中,不能改变风机电机控制系统的其他功能单元和元器件设备的正常稳定运行性能参数。

(2)在变频调速节能运行过程中,当风量检测系统出现故障时,变频调速控制系统将以电机拖动系统上限频率进行恒功率运行,以确保系统最大的风量。当变频调速控制系统出现故障时,能够发出声响及指示灯指示,提醒运行管理人员进行相关设备性能检查,同时起动原控制系统(如软起动、继电器直接起动等)。

风机电机拖动系统采用变频调速控制技术升级改造后,能够取得较好的节能经济效益、延长使用寿命等功能效果,具体表现为:

(1)速度调节范围较宽。基于PLC与变频器的变频调速控制系统,其控制可靠性和精确度较高,且其速度控制范围较宽,理论上能够实现在1%~100%范围内的连续动态平滑节能调节控制。

(2)实时调节误差较小,精度较高。可以达到±0.5%的误差范围。

(3)电能利用效率较高。电机转换效率可以达到96%以上,同时电机拖动系统功率因素可以达到95%,节省了大量无功功率,降低了配电网变压器的无功调节负担,提高了供电系统的供电可靠性。

(4)具备软起动功能。能够有效抑制电机起动冲击电流,确保电机起动具有较高安全可靠性,可以延长电机拖动系统的综合使用寿命。

(5)节能节电效果十分明显。采取变频调速控制系统进行技术升级改造后,比常规继电器直接起动控制系统,其节能节电效率通常可以达到30%以上。

3电机拖动系统变频调速节能改造效益分析

3.1电机变频调速节能改造方案

一大型煤矿井下通风系统中共采用3台通风机(按照两用一备控制模式设计),其进口温度为22℃,进口压力为99.12kPa,升压为68kPa,轴功率为207kW,配置异步电动机型号为Y355M1-2-220kW/380VF级IP55,功率为220kW。为了提高煤矿井下通风系统运行的可靠性、经济性、节能性,结合煤矿井下通风系统的实际运行工况,按照“最小改动、最大可靠性、最优经济性”等改造原则,对煤矿井下通风电机拖动系统进行技术升级改造。决定采用基于PLC与变频器的变频调速控制对煤矿井下通风电机拖动系统进行技术升级改造,为了分析改造经济效益,决定1#风机采用变频调速运行方式,2#风机采取工频运行方式。

3.2电机拖动系统变频调速升级改造节能效益分析

在各项运行技术指标和环境均相同的情况下,1#风机与2#风机相比,1#风机其调节运行工况性能要更加平滑稳定,平均运行电流降低到326A,比工频运行额定电流的408A要直接降低82A,理论节电效率为:,实际节电效率为43%,节能节电效果十分明显。

4结语

根据通风空调系统电机变频调速节能控制技术原理,对煤矿井下通风电机拖动控制系统进行技术升级改造,使井下通风系统运行更加安全可靠和节能经济,同时煤矿井下通风系统电机拖动设备的综合使用寿命也得到延长。结合一大型煤矿井下通风系统具体节能改造工程的节电经济效益分析计算,可以得出煤矿井下通风系统变频调速升级改造的节能优越性。对煤矿井下通风系统风机电机拖动系统的变频调速节能升级改造,这个通风系统运行的稳定性和可靠性得到了进一步提高,井下通风温湿度指标也能满足实际煤炭开采需求。在现代变频调速控制技术的进一步完善和成熟下,变频调速节能改造电机拖动系统将成为煤矿井下通风系统节能升级改造的重要方法之一。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接