工业伺服节能改造,关于节能制造公司信息聚合页,专注于节能制造公司:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
您的位置:首页 > 节能制造公司

注塑机伺服节能改造

  注塑机工作原理  原定量泵(多为叶片泵)+ 异步(鼠笼式)电机的运行中,马达高速恒定持续运转,使油泵100%输出,当动作的速度越慢、动作的 时间越长、压力越大,潜在节能的幅度

6522018-06-28 09:34:30

查看详情

铝型材挤压机节能改造方案

一、项目总述某铝型材公司作为铝型材行业的领军者、企业管理的先驱者,在响应国家节能减排号召、开展能效管理工作方面拥有良好的管理基础和实施条件。本报告结合该公司的管理

2732018-06-25 14:35:10

查看详情

为什么注塑机伺服节能改造要比其他节能方式节电率要高?

为什么注塑机伺服节能改造要比其他节能方式节电率要高?注塑机节能改造的方法有很多,其中主流方式为:将原系统改造为伺服控制系统。为什么伺服控制系统要比其

2122018-08-15 17:00:09

查看详情

液压站伺服节能改造

液压站伺服节能改造 液压站工作原理电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后

2102018-06-28 09:31:14

查看详情

油压机节电节能改造方案

第一章 油压机现状介绍 1.1 原机台配置情况 贵司现有油压机47台,进行配置,改造前机台具体配置如下: 品牌 吨位 T 数量 台 电机功率 电机转速 油泵排量 系统流

2082018-06-25 14:13:47

查看详情

压铸机节能改造方案

第一章 压铸机现状介绍1.1 原机台配置情况现有压铸机20台进行配置,改造前机台具体配置如下: 品牌 型号 数量 油泵型号 电机转速 RMP 电机功

1972018-06-25 13:52:35

查看详情

工厂节能降耗措施有哪些?

工厂节能降耗措施有哪些?徕卡节能电气,专业从事工业节能15年,在工业节能方面,主要对生产车间内大型液压油压设备做伺服系统节能改造。工厂的节能降耗项目,节能改造

1852018-08-03 13:06:08

查看详情

空压机节能改造

  空压机节能改造  对空压机节能的改造方式主要有以下两种  1.变频调速方式  采取变频调速方式来降低空压机电动机的轴功率输出。改造之前,空压机的压力达到设定压力

1702018-06-25 16:42:26

查看详情

油压机伺服节能改造

  油压机伺服节能改造  油压机工作原理  电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、

1592018-06-25 16:26:02

查看详情

注塑机料筒节能改造

  注塑机料筒节能改造  注塑机料筒节能通过注塑机干燥机高效节能系统进行节能。  该干燥机高效节能系统是将干燥机排出的热风,经高效节能转换系统,吸收热量排出湿气粉尘

1482018-06-29 16:22:33

查看详情

注塑机节能改造方案

某磨具企业,注塑机节能改造方案

1442018-06-25 13:43:47

查看详情

工业空压机与锅炉怎样配合进行节能改造?

  随着社会发展,对能源需求剧增,为了进一步推进科学发展,减排降耗节能改造迫在眉睫。  企业内部空压机基本24小时持续运行供气,对企业能源消耗"做出重大贡献",如果空压机能

1262019-02-22 09:49:45

查看详情

专访苏州徕卡节能电气技术有限公司副总倪春林

  专访苏州徕卡节能电气技术有限公司副总倪春林  前言  有一句话说得非常好,没有传统的行业,只有传统的企业。这两个月,当我们的编辑团队深入近30家企业采访交流时,不论采

1142019-02-12 14:07:42

查看详情

空压机热回收项目节能改造

空压机热回收项目 内容 节能效果 备注 采暖 热水 产热水量(50℃升至60℃) 388吨/天 10℃温差 满足采暖面积

1112018-06-25 14:27:06

查看详情

工业节能与大数据相结合,为节能事业发展指明方向

  徕卡节能:未来工业节能与大数据结合为发展方向   (徕卡节能大数据技术能源管理系统示意图)  节能减排作为我国当前重点发展产业,发展好坏事关我国当前“调结构,稳

1092019-02-18 11:28:11

查看详情

徕卡节能发展自身技术优势,快速布局节能行业

  徕卡节能:加速节能产业高端化布局  继信息消费、光伏产业、基础设施建设投资之后,发展节能环保产业俨然成为了新一届政府稳增长组合拳中一支有生力量。2013年8月,国务院

1092019-02-20 16:03:03

查看详情

注塑机如何实现30%~80%节电率的节能改造

注塑机做节能改造,首选推荐“伺服控制系统”的节能改造。 注塑机,典型的周期性动作、变动负荷的生产设备。其一套完成的生产周期为“锁模、射胶、溶

1082018-08-21 14:28:55

查看详情

空压机余热回收节能改造

  空压机余热回收节能改造  空压机余热回收是一项非常环保的节能方式。空压机余热回收是将空压机的高温油经过热交换等技术处理把热量传递到冷水中,冷水被加热后流到保温

1032018-06-25 16:44:55

查看详情

注塑机伺服节能改造的原理大揭秘

  注塑机伺服节能改造的原理大揭秘   注塑机通过徕卡节能设备产品改造之后,正常节电率在:30%-80%  那注塑机节能改造,其改造原理是什么?  注塑机节能改造后的设备,系统

1032018-06-26 14:49:16

查看详情

水泵节能改造

  水泵节能改造  离心泵节能方式有三种:  A. 水泵变频调速节能(比较常见)  B. 水泵叶轮改造节能(比较少)  C. 更换电机和水泵节电(减少水管阻力和选择合理扬程、流

922018-06-25 16:40:45

查看详情

中央空调节能改造

    中央空调工作原理  一般来说,中央空调系统的大负载能力是按照天气热、负荷大的条件来设计,但实际上系统极少在这些极限条件下工作。根据有关资料统计,空调设备95%的

902018-06-25 16:35:37

查看详情

液压系统运行状况分析,如何进行节能改造

    液压系统主要应用场景:  在钢厂、铝型材厂家、注塑厂家、汽车配件(四门一盖、汽车外壳等部件)五金冶金类行业广泛应用液压系统。  主要体现设备有:注塑机、压铸机

872018-12-21 10:19:21

查看详情

节能节电行业乘风破浪前行者:徕卡节能电气

  徕卡节能:节电产业是最具发展潜质的朝阳产业  中国的节电市场是一个沉睡的市场,据不完全统计,它具有万亿的巨大市场份额,谁能唤醒这个市场,谁就将获得无法估量的回报。据美

872019-02-20 10:01:28

查看详情

钢铁冶金行业节能改造工程项目

  钢铁冶金行业常用设备有不同类型的液压站,针对液压站进行伺服节能改造,节能降耗效果明显。  大型液压站一般使用行业为:冶金、有色金属加工、矿山、港口、石油化工及风力

862018-06-25 15:14:08

查看详情

注塑机节能改造,一般都在哪些部位做节能改造

  注塑机节能改造,一般都在哪些部位做节能改造?   现在主流做注塑机节能改造的,一般改的部位在:电机、油泵、干燥机,加热部位的加热圈节能。   注塑机动力部位伺服节能

852018-08-03 14:33:41

查看详情

循环冷却水节能改造

循环冷却水节能改造   产品概述  循环水智能控制系统内含四大功能模块:  1. 带气候补偿的人工智能控制系统  2. “风”“水”平衡系统  3. 水

842018-06-25 16:38:25

查看详情

循环水节能优化系统

  循环水节能优化系统  循环水节能优化工作原理:  循环水节能优化系统采用国内先进的控制系统,对循环水系统进行优化控制。主要利用智能控制系统对运行设备进行控制,控制

802018-11-13 10:16:35

查看详情

注塑机做节能改造,一般都用什么节能方案?

  注塑机做节能改造,一般都用什么节能方案?  一、注塑机节能改造,目前主流的节能改造方式是:  1、液压动力系统进行伺服系统节能改造。  2、干燥筒的节能改造,余热回收

802018-08-03 14:07:08

查看详情

企业推进注塑机伺服节能改造,想知道注塑机在什么工作阶段最省电节能?

  企业推进注塑机伺服节能改造,想知道注塑机在什么工作阶段最省电节能?   一般注塑机在注塑成型“保压”以及产品“冷却”的过程中,异步电机都是在

792018-08-09 17:01:30

查看详情

关于公示苏州工业园区2017年度重点用能企业节能降耗低碳目标责任考核结果的通知

  关于公示苏州工业园区2017年度重点用能企业节能降耗低碳目标责任考核结果的通知  根据《苏州工业园区重点用能单位节能降耗低碳发展目标责任考核方案》(苏园经〔2016

772018-07-24 10:06:03

查看详情
节能改造关注问答
1、

电机节能的方式有哪些?

选择合适的电动机容量

能够满足负载的需要,实现合理匹配。轻载和空载运行都会造成损耗相对高,运行效率低。同一台电动机拖动的负载,运行效率也是在变化的,不是固定不变的,随着负载大小的波动而在变化。

空载运行时间长的电动机安装自控装置为了减少空载时间内的电能损失,对于经常性空载的电动机,应安装空载自控装置。在空载运行一段时间后,能够自动切断电源,退出空载运行,恢复正常运行状态。

低负载率的电动机降压运行

三相异步电动机的铁损和铜损,与输入电压的大小直接有关。一般负载不变的情况下,降低输入电压可使铁损减少,铜损增加。但是这时轻载运行电动机的总损耗中,铁损要比铜损的作用大。因此,适当降低绕组电压运行的办法能使总的损耗下降,具有一定的现实意义。而实现这一措施,可以通过特别的电压自控装置来完成。

采用磁性槽泥实施电动机改造

采用磁性槽泥对电动机进行技术改造,是一种降低槽口磁阻的有效办法。也就是在竹制槽楔上,用磁性槽泥将槽口抹平。这对电动机及其所带负载均有利,系统具有节电作用。

三相异步电动机采用变频调速

三相异步电动机采用变频调速,可在低频起动时大大减少电动机的起动电流,从而实现节电目的。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

步进电机抗干扰能力的分析

在试验机控制系统中,采用工控机测量冲击电压电流波形时,电磁干扰是影响测试结果的重要问题。为了使测量结果尽可能的准确,除了让分压器尽可能的靠近试品接地和在测量电缆末端增设衰减器等常规措施外,在测量回路中采用同轴电缆的平衡接法,能够消除由于地电位的升高而引起的电缆的共模干扰。

两根电缆的长度和波阻抗必须相同,并且首末端同时匹配。通过以上措施,减弱了球隙瞬间放电引起的电磁干扰,消除了地电位的升高引起的共模干扰。

抗干扰能力低是步进电机在控制电路中的一个显著缺点,要保证步进电机稳定可靠工作,必须采取相应的措施保护步进电机及其驱动器。该控制系统在设计时采取了以下必要的保护措施:

1)安装隔离变压器和低通滤波器,防止强脉冲干扰信号串入步进电机的供电电源,烧坏步进电机驱动器的供电模块;

2)遵守“一点接地”原则,将步进电机的PE端、脉动信号的负端、方向信号负端、电源滤波器外壳、步进电机的外壳、以及步进电机和驱动器之间的电缆保护套一点接地并且接在屏蔽箱的外壳上;

3)在脉冲信号和方向信号的输入端增加瞬态电压抑制二极管(TVS),保护步进电机驱动器。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


3、

双速电动机在汽轮机循环水系统中的作用


在汽轮机循环水系统中,动叶可调泵比定速泵能够更加适应负荷、水位、水温和真空的变化,通过调节叶片角度来改变循环水量,可使汽机能够保持在较好的工作状态,并且循泵能一直保持在高效区运行。

优化措施:将定速泵改为动叶可调泵,叶片角度调节要能够快速电动调节,才能更适应电厂调峰、冷端优化的需要。

循环水系统由单独供水改为母管制供水后,虽然运行方式灵活了一些,但仍然偏少。为了获取更灵活的运行方式及节能减排,一些电厂将循泵的电动机改为双速电动机,这样,循环水量的调整范围更广,更能满足国家节能减排的要求。

电动机具有代表性的运行方式为冬季6个月“两机两泵”高速运行,春秋季3个月采用“两机三泵”高速运行,炎热季节的3个月采用“两机四泵”高速运行。循环泵应用双速改造后,冬季6个月“两机两泵”低速运行,春秋季3个月采用“两机三泵”高、低速配合运行,炎热季节的3个月采用“两机四泵”高、低速配合运行。

优化措施:将循环水系统中的部分定速泵改为双速泵,并通过优化调整试验和优化方法(泵容量、个数较多时,可采用遗传算法寻优)确定不同运行方式的切换时机。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


4、

三相交流异步电动机故障处理方法

三相交流异步电动机是工农业生产中最常见的电气设备,其作用是把电能转换为机械能。其中用得最多的是鼠笼型异步电动机,其结构简单,起步方便,体积较小,工作可靠,坚固耐用,便于维护和检修。为了保证异步电动机的安全运行,电气工作人员必须掌握有关异步电动机的安全运行的基本知识,了解对异步电动机的安全评估,做到尽可能地及时发现和消除电动机的事故隐患,保证电动机安全运行。


电动机在运行中由于种种原因,会出现故障,故障分机械与电气两方面

一、械方面有扫膛、振动、轴承过热、损坏等故障。

1、异步电动机定、转子之间气隙很小,容易导致定、转子之间相碰。一般由于轴承严重超差及端盖内孔磨损或端盖止口与机座止口磨损变形,使机座、端盖、转子三者不同轴心引起扫膛。如发现对轴承应及时更换,对端盖进行更换或刷镀处理。

2、振动应先区分是电动机本身引起的,还是传动装置不良所造成的,或者是机械负载端传递过来的,而后针对具体情况进行排除。属于电动机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良,转轴弯曲,或端盖、机座、转子不同轴心,或者电动机安装地基不平,安装不到位,紧固件松动造成的。振动会产生噪声,还会产生额外负荷。

3、如果轴承工作不正常,可凭经验用听觉及温度来判断。用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠扎碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,因为电动机要每运行3000-5000小时左右需换一次润滑脂。例如在球磨机电机其型号是JR138--8-245KW,由于运转一年多后,轴承发出不正常的声音,用听棒接触轴承盒,听到了“咝咝”的声响,同时还有微小“哒哒”的冲击声,对其进行检修,打开发现轴承盒内缺油,同时轴承滚柱有的以有细微的麻痕。这样对轴承进行了更换,添加润滑油脂。在添润滑脂时不易太多,如果太多会使轴承旋转部分和润滑脂之间产生很大的磨擦而发热,一般轴承盒内所放润滑脂约为全溶积二分之一到三分之二即可。在轴承安装时如果不正确,配合公差太紧或太松,也都会引起轴承发热。在卧式电动机中装配良好的轴承只受径向应力,如果配合过盈过大,装配后会使轴承间隙过小,有时接近于零,用手转动不灵活,这样运行中就会发热。

二、电气方面有电压不正常绕组接地绕组短路绕组断路缺相运行等。

1、电源电压偏高,激磁电流增大,电动机会过分发热,过分的高电压会危机电动机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大造成电动机过载而发热,长时间会影响电动机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电动机发热,同时转距减小会发出“翁嗡”声,时间长会损坏绕组。总之无论电压过高过低或三相电压不对称都会使电流增加,电动机发热而损坏电动机。所以按照国家标准电动机电源电压在额定值±5%内变化,电动机输出功率保持额定值。电动机电源电压不允许超过额定值的±10%,;三相电源电压之间的差值不应大于额定值的±5%。

2、电动机绕组绝缘受到损坏,及绕组的导体和铁心、机壳之间相碰即为绕组接地。这时会造成该相绕组电流过大,局部受热,严重时会烧毁绕组。出现绕组接地多数是电动机受潮引起,有的是在环境恶劣时金属物或有害粉末进入电动机绕组内部造成。电动机出现绕组接地后,除了绝缘已老化、枯焦、发脆外都可以局部处理,绕组接地一般发生在绕组伸出槽外的交接处(绕组端部),这时可在故障处用天然云母片或绝缘纸插入铁心和绕组之间,在用绝缘带包扎好涂上绝缘漆烘干即可,如果接地点在铁心槽内时,如果上成边绝缘损坏,可以打出槽楔修补槽衬或抬出上成线匝进行处理,若故障在槽底或者多处绝缘受损,最好办法就是更换绕组。

3、绕组中相邻两条导线之间的绝缘损坏后,使两导体相碰,就称为绕组短路。发生在同一绕组中的绕组短路称为匝间短路。发生在两相绕组之间的绕组短路称为相间短路。不论是那一种,都会引起某一相或两相电流增加,引起局部发热,使绝缘老化损坏电动机。出现绕组短路时,短路点在槽外修理并不难。当发生在槽内,如果线圈损坏不严重,可将该槽线圈边加热软化后翻出受损部分,换上新的槽绝缘,将线圈受损的部位用薄的绝缘带包好并涂上绝缘漆进行烘干,用万用表检查,证明已修好后,再重新嵌入槽内,进行绝缘处理后就可继续使用,如果线圈受损伤的部位过多,或者包上新绝缘后的线圈边无法嵌入时,只好更换新的绕组。

4、绕组断路是指电动机的定子或转子绕组碰断或烧断造成的故障。定子绕组断部,各绕组元件的接头处及引出线附近。这些部位都露在电动机座壳外面导线容易碰断,接头处也会因焊接不实长期使用后松脱,发现后重新接好,包好并涂上绝缘漆后就可使用。例如电机其型号是Y132M-47.5KW在工作中突然发出声响后停车,经检查后发现绕组一相断路。打开电动机瓦盖后,发现电动机壳外导线与绕组连接处断开,其原因就是焊接不实,长期使用后松脱。打开捆绳,处理后重新焊接,包好涂上绝缘漆后继续使用。如果因故障造成的绕组被烧断则需要更换绕组。如转子绕组发生断路时,可根据电动机转动情况判断。一般表现为转速变慢,转动无力,定子三相电流增大和有“嗡嗡”的现象,有时不能起动。出现转子绕组断路时,要抽出转子先查出断路的部位,一般是滑环和转子线圈的交接处开焊断裂所引起,重新焊接后就可使用。如果是线圈内部一般使用断条侦察器等专用设备来确定断路部位。例如:电动机型号JZR212-63.5KW在开车时,突然发现小车无力,并且伴有翁翁的响声。经检查发现转子一相断路。打开抽出转子看到滑环和转子线圈交接处开焊,把接头处用纱布处理干净,重新用电烙铁焊接,焊接后又可继续使用。

5、三相异部电动机在运行过程中,断一根火线或断一相绕组就会形成缺相运行(俗称单相),如果轴上负载没有改变,则电动机处于严重过载状态,定子电流将达到额定值的二倍甚至更高,时间稍长电动机就会烧毁。在各行业中,因缺相运行而烧毁的电动机所占比重最大。一般电动机缺相是由于某相熔断器的熔体接触不良,或熔丝拧的过紧而几乎压断,或熔体电流选择过小,这样通过的电流稍大就会熔断,尤其是在电动机起动电流的冲击下,更容易发生熔体非故障性熔断。有时电动机负荷线路断线,一般是安装不当引起的断线,特别是单芯导线放线时产生的小圈扭结,接头受损等都可能使导线在运行过程中发生断线。由于电动机长期使用使绕组的内部接头或引线松脱或局部过热把绕组烧断电动机出现缺相运行时。总之,不管是什么样的缺相,只要能及时发现,对电动机不会造成大的危害。为了预防电动机出现缺相运行,除了正确选用和安装低压电器外,还应严格执行有关规范,敷设馈电线路,同时加强定期检查和维护。

6、电动机的接地装置。电动机接地是一个重要环节,可是有的单位往往忽视了这一点,因为电动机不明显接地也可以运转,但这给生产及人身安全埋下了不安全隐患。因为绝缘一旦损坏后外壳会产生危险的对地电压,这样直接威胁人身安全及设备的稳定性。所以电动机一定要有安全接地。所谓的电动机接地就是将电气设备在正常情况下不带电的某一金属部分通过接地装置与大地做电气连接,而电动机的接地就是金属外壳接地。这样即使设备发生接地和碰壳短路时电流也会通过接地向大地做半球形扩散,电流在向大地中流散时形成了电压降,这样保证了设备及人身安全。

三、结束语

综上所述,为了能采用正确的方法进行电动机的故障修理,就必须熟悉电动机常见故障的特点及原因,才能少走弯路,节省时间,尽快地将故障排除,恢复电动机故障,使电动机处于正常的运转状态。做好电动机的定期检查和维护工作,也是保证电动机安全运行,延长寿命的有效措施之一。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

单台变频器拖动多台电机的可行性分析及改造策略

石油石化企业的生产强度比较大,一组电机会设置成多台互为备用,以确保电气系统安全可靠运行。但通常情况下整组电机仅设一台变频器用于拖动主电机,主备电机切换后,变频器不再对备用电机实施控制,整组电机便脱离变频调速系统,造成能源呆滞。本文基于经济学角度,通过分析调速控制系统的组成及工作原理,探索变频器“一带多”系统的经济性,可行性。最后阐述改造工程中采用单台变频器拖动多台电机运行时需注意的问题。

1变频器“一带多”的控制系统组成

变频器“一带多”调速控制系统主要包括三部分:信号采集及处理系统,负反馈闭环调速系统和自动检测切换控制系统。

现场环境可采集的信号有很多,诸如压力信号、温度信号、流量信号或液位信号等等。信号采集及处理系统即完成对就地信号的采集与处理,再通过相应的变送器以电流或电压信号传出,必要时为保证到达后续环节的信号质量需要加入信号隔离器。负反馈闭环调速系统是将整形好的信号传送至PID调节器,与设定值比较运算,得出的控制信号对变频器输出进行实时调节,使电机实现变频运行,实现闭环调速控制,进而更好的控制电机执行力。自动检测切换控制系统由可编程序控制器(PLC)及外围输入输出器件组成。系统上电,“手/自动”、“工/变频/检修”等操作命令及变送信号录入系统,核心元件开始依照指令自动扫描,运算,做出判断,遵循程序指标对主备电机实施自动切换控制,同时控制变频器的起动与停止。

2“一带多”变频调速控制系统的工作原理

2.1变频调速控制系统

PLC与变频器联合控制电机的转速及互换。如图1所示,PLC接收变送信号,将反馈得到的速度与给定的速度作比较,再经过高速技术模板运算,得出速度控制量,通过通讯总线将控制量传给变频器,变频器结合自身闭环控制作输出调整,输出信号驱动电机同时反馈PLC,实现调速控制。变频运行状态下主电机需要变频器供电,其他电机做工频运转或备用。如果变频供电电机停机,其相应信号采集处理单元切出系统。此时某台备用电机接到优先级高的变频指令,直接切到变频控制系统,实现变频调速供电,相应信号采集处理单元切入调节回路,参与闭环调速控制。当“工/变频/检修”切换开关处于“工频”或“检修”位置,变频调速控制将不被切入,电机始终处于工频运行或检修状态;当“手/自动”切至手动位置,可将负载与PLC、变频器全部脱开,直接实现工频运作。

2.2PLC工作原理

一旦PLC运行,运行期间重复执行输入采样、用户程序执行、输出刷新这3个阶段,如图2。输入采样阶段,PLC会依次对状态、数据进行扫描,存入相应I/O单元;采样输入结束,进入用户程序执行阶段,然后输出刷新。在这个周期性的运行过程中,数据发生变化,但执行过的单元数据信息不会变化。

2.3PLC与变频器之间通讯

PLC和变频器的通讯方式可以有USS,profibus-dp,MODBUS或PROFINET等多重选择。在此过程中,PLC为“主站”,变频器为“从站”,主站通过串行总线将不断刷新的控制命令传送给从站,从站接收命令后会调整控制输出,并将数据信息以报表形式回传送至主站,如此循环。

3变频器“一带多”的经济性

3.1直接效益

变频调速系统较高的调速精度和较宽的调速范围及“一带多”的控制方式,可以将每组控制回路总投资极大的节约,降低无功能耗的同时缩短资源回收期,以至寿命期内创造零成本经济效益。

3.2间接效益

1)变频调速控制系统可以改善因实际负荷与设计负荷偏离较大而造成的阀体前后压差大、润滑油温轴温高等现象,通过调整转速维持恒压等办法延长轴承、轴瓦的使用寿命。

2)PLC可以对电机实时监控,系统运行状况一步掌握,一旦出现异常现象可极早发现尽早解决,缩短检修时间,亦可避免因事故延迟造成不必要损失。

3)变频调速控制系统可实现主备电机自动切换,备用电机软启动,即便电机控制的流体里杂质较多容易堵塞与泄露,也不会产生大电流冲击电机,增加了电机使用年限。

4)变频器的保护功能齐全,PLC控制快速精确。对于正反转等特殊要求及启停较频繁的情况,两者实施联合保护可以进一步提升系统稳定性和可靠性。

4改造工程

4.1注意事项

变频器的“一拖一”已是成型技术,但在已经投产的装置上改造成“一带多”并非简单易事。首先是电缆走线,控制方案。因为多台电机会有不同的工况,调节参数、范围及控制要求。其次是控制柜安放地点设置。变频器体积及PLC控制柜需要满足电气相关标准。再次是系统总的配电容量。加装了变频器和控制柜,配电系统的供电容量是否可以满足使用要求。第四是电机本身性能是否可以在变频情况下启动,如绝缘等级、变压启动等。

4.2改造策略

本着改造工程量小,运行性能好,节能显着,投资回收期短等原则制定方案。

与电机匹配的变频器功率一定要选定稍高于或等于电机最大使用功率,且选型时等级也要选择高一些的,能满足装置与仪表配套,另外能够实行闭环控制的变频器。同时电机应用变频器时,由于电压变化率dv/dt增高,电机的绕组电压分布变得很不均匀,电机故障率增加,所以从长远经济效益上来讲,在采用变频器“一带多”的同时也要将较低的绝缘等级电机更换为绝缘等级高一些的电机,保证变频器的使用寿命同时保证电机的使用寿命。再者对电机实施必要的保护时,最好不要在变频器输出端应用熔断器,一旦一台电机出现故障,变频器会检测到输出缺相,然后报警停机,这样会将事故进一步扩大。当电机台数过多、线路太长的情况下,可增加输入输出电抗器等措施。另外需做好日常的维护工作。

5总结

采用变频器“一带多”调速控制系统可以将设备的使用寿命延长,将供配电系统的耗能降低,将电力系统安全经济性提升,但需要注意的事项也很多。夯实的理论基础,丰富的现场经验,严谨的工作态度可使变频调速控制系统运行出最完美的经济效益。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

同步电动机的电力拖动原理

由于同步电动机在稳定运行时,其转速等于同步转速,虽然同步电动机的机械特性较为简单,但由于同步电动机仅在同步转速下才能产生恒定的同步电磁转矩,不能采取直接起动的方法,而必须采取专门的方法来起动。

1、同步电动机的起动

同步电动机在正常运行时,转子恒以同步转速旋转,使旋转的转子磁场与定子因电磁作用而产生的旋转磁场保持相对静止,使得同步电动机产生稳定的电磁转矩,故同步电动机能够带动负载稳定地并恒以同步速度运行。但是要利用这两个定、转子磁场之间的作用使电动机在50Hz的交流电源下从静止状态起动起来却是非常困难的。

如果三相定子绕组接人三相对称电源时,所建立的定子磁场N极正好擦过巳励磁的转子磁极的S极面,由于异性磁极的吸引作用,定子磁场力图将静止的转子吸着与它一同旋转。但由于转子有着相当大的机械惯性,当转子尚未来得及向前转动时,定子磁场的N极已转到了转子D极的后面。它又力图将转子拉向倒退。在转子仍未反应过来时,定子磁场的"极又转到了转子S极的前方,苒度要将转子向前拉……如此反复,致使转子只能在原处摆动而旋转不起来。因此不能在额定电源下直接起动是同步电动机的主要缺点之一。为了使同步电动机得以起动,目前可采用的方法主要有三种。

1.1辅助电动机起动

选用一台和同步电动机极数相同的异步电动机作为辅助电动机来牵引同步电动机。起动时在同步电动机转子尚未加入励磁的情况下,先用辅助电动机将转子牵引到接近同步转速,然后采用自整步法,在同步电动机转子励磁绕组中通入直流励磁电流,再利用整步转矩将同步电动机接入电网,这时在定、转子磁场的共同作用下将转子拉入同步运行。此时辅助电动机巳失去作用,为减小不必要的损耗,可切断辅助电动机电源使它与主机脱离并停止运行。该方法只适用于空载起动或同步调相机的起动,其所需设备多、操作复杂。

1.2异步起动

现代大多数同步电动机,在其转子上都装有类似异步电动机的笼型绕组(称为起动绕组或阻尼绕组)。在定子接通电源后,起动绕组中便能产生异步电磁转矩起动电动机,等转速接近同步转速时,再通入励磁电流,利用同步电磁转矩将电动机牵入同步转速。这种起动方法是目前同步电动机最常用的起动方法。

异步起动时,励磁绕组不能开路,否则由于励磁绕组匝数很多,定子旋转磁场将在励磁绕组内感应很高的电压,可能会击穿励磁绕组的匝间绝缘,甚至造成人身事故。异步起动时,励磁绕组也不能直接短路。如果直接短路,励磁绕组中将感生一个很大单相电流,此单相电流与旋转气隙磁场相互作用,将产生一个较大附加转矩(单轴转矩〉。因为异步起动时实际的起动转矩是起动绕组产生的异步转矩和单轴转矩之和(两者合成〉。通常选用一个阻值为励磁绕组本身阻值10倍左右的起动电阻与转子励磁绕组串接,以减小励磁绕组中的感应电流,削弱单轴转矩对起动的影响。

2、同步电动机的变频调速

同步电动机是以其转速"与供电电源频率力之间保持严格同步关系而命名的,即只要电源频率保持不变,同步电动机的转速就恒定不变而与负载大小无关。因此要改变同步电动机的转速,只有通过改变其供电电源的频率来达到,即采用变频调速的方法。

2.1他控式同步电动机变频调速系统

他控式同步电动机变频调速系统中的变频装置可以采用交-直-交变频器,也可采用交-交变频器。该系统结构简单,控制方便,只需一台变频器供电,成本低廉。可作为变频起动装置,实现同步电动机的软起动;也可用于多台同步电动机的群调速系统。但由于没有转速反馈,他控式变频调速方法虽然可以实现同步电动机的转速调节,但就像同步电动机接在工频电网上一样,存在转子振荡和失步的隐患,这是他控式同步电动机

2.2自控式同步电动机变频调速系统

与他控式同步电动机变频调速相比,自控式同步电动机变频调速的最大特点就是从根本上消除了同步电动机转子振荡和失步的隐患。因为自控式同步电动机变频调速系统在电动机轴端装有一台转子位置检测器,由它发出的信号控制给定子供电的变频装置电力电子器件的导通顺序和频率,使定子旋转磁场的转速和转子旋转的转速相等,始终保持同步,因此不会因负载冲击等造成失步现象。这种调速方式适用于快速可逆运行和负载变化剧烈的场合。

自控式同步电动机变频调速系统中的变频装置,可采用交-直-交型,也可采用交-交型。自控式同步电动机变频调速系统中的同步电动机,从电机结构上看,它是交流的,但从其工作原理上看,就像是一台直流电动机。它采用电力电子逆变器和转子位置检测器,代替了容易产生火花的旋转接触式换向器,即用电子换向取代机械换向。因此自控式同步电动机变频调速系统又称为无换向器电动机的调速系统。自控式变频同步电动机也称为无换向器电动机。根据调速系统所采用的变频装置不同,无换向器电动机可分为交流和直流两类。采用交-直-交变频装置时,其逆变器由直流电源供电,故称为直流无换向器电动机;采用交-交变频装置时,其逆变器由交流电源供电,故称为交流无换向器电动机。

3、同步电动机的功率因数补偿应用

随着电力系统日益扩大,运行在系统上的主要负载是异步电动机与变压器。因此,电网就要担负很大一部分电感性的无功功率,导致整个电网的功率因数降低,使得线路损耗和压降增大,输电质量变坏,电力系统运行也很不经济。为此,就提出了提高电网功率因数的要求。而同步电动机在额定电压和额定频率下,在输出功率不变的条件下,改变励磁电流的大小,就可以改变流入同步电动机定子电流的性质。即正常励磁时,同步电动机的定子电流与定子电压同相位,相当于纯电阻性负载;当励磁电流比正常励磁电流大时(处于过励状态),同步电动机定子电流在相位上超前定子电压,相当于电阻电容性负载;当励磁电流小于正常励磁电流时(处于欠励状态),同步电动机定子电流在相位上滞后定子电压,相当于电阻电感性负载。因此,同步电动机接人电网,通过调节其励磁电流,能够起到改善电网总功率因数的作用。一些大生产企业为了提高电网的功率因数,常使用同步电动机来补偿电网的功率因数。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

浅析电力拖动系统稳定运行的充要条件

电力的拖动系统可实现机械生产各方面的不同需求,且价格不昂贵、电路设计简单、对自身系统有保护作用,所以当前工业生产对电力拖动应用已非常广泛。本篇文章简单分析了电力拖动系统稳定运行的充要条件,并且对他励直流电动机、异步电动机三种典型负载时系统的稳定性进行判断。

伴随自动化水平提升及科技的发展,在工业生产中对电力拖动系统的控制性、安全性得到了极大重视,再加上电力拖动系统的众多优点,因此电力拖动系统已得到了很广泛的运用。

1电力拖动系统

1.1稳定运行概念

(1)转速改变:假设原本是在工业生产中的运动,以相同的速度进行。当通过一些条件,如负载转矩变化,电源电压变化时,系统切换原来的转速(速度可能是变大或是变小),将原有平稳状态所打破。而在这一种情况下电力拖动系统会生产新的转速并且可以持续一段时间,然后通过新的转速带来新的稳定状态,并产生新的工业生产运行。这表明该系统的运行状态是非常稳定的。

(2)转速变回:可能是因为电源电压及负载转矩变化所带来的副作用消失,新的转速转变回原有的转速,电力拖动系统后又进行正常运行。这点也可说明电力推动系统是很稳定的。

(3)转速超限上升、下降:电源电压及负载转矩变化所带来的副作用消失之后,电力拖动系统的转速却超越正常限量的上升或是下降,则可证明该系统的运行存在不稳定的情况。

1.2工作原理

(1)方向的判断正方向判断:电动机在未有干扰和障碍的环境下,假设可以正常地旋转,即可认为方向为正方向。电磁转矩、转速所形成方向和电动机旋转一致为正向;反方向判断:电磁转矩、转速所形成方向和电动机旋转不一致为反向。

(2)控制情况:一般情况下是用电气设备控制。计算机对电力拖动系统控制运用的方法主要是靠逻辑运算、编写程序进行。

1.3负载机械性、过渡

(1)负载机械性分为:恒转矩、恒功率、风机泵类负载三种。在电动机上运用负载非常广泛的,为了可完善电力拖动系统,对负载了解就非常必要。第一,要知道恒转矩、恒功载、风机泵类负载以及负载方程式;第二,要了解负载曲线图,与所学过的动力学有机结合,对负载分析,分析其特性。

(2)过渡:过渡受外来因素影响(包括外部环境、人为等原因)负载转矩参数会发生变化,电力拖动系统稳定性会被打破。为了确保电力拖动系统稳定,要明确根据电动机机械性产生变化来确定过渡的运行情况。

1.4电动机

(1)电动机种类:a.安装方式:包括卧式、立式两种类型;b.防护方式:包括开放式、防护式、封闭式、防爆式四种类型。

(2)电动机工作:可用连续工作制进行表达,多数情况电动机工作形式与生产机械一致,从三方面选择(连续工作制、周期继续工作制、短期工作制)。

(3)电动机的选择:电动机好坏决定电力拖动系统的成功与否,因此对与电动机的选择要细心,既要考虑电动机自身性能和所工作的环境,还要考虑到价格等客观因素。电动机构造、机械能力、形式要完完全全根据生产要求进行,做到机械类别、负载条件、形式完全是吻合的,也只有满足了这些条件才可保证电动机质量合格及正常运行,才能让电力拖动系统发挥出最佳的效果及作用。在生产运行中会发现电动机容量同样也是重要的环节,在选择电动机时要非常重视。电动机工作时所要求的环境同样重要,环境温度要是渐渐升高并接近或达到规定温度值,就会造成电动机在运行时的机械散热作用及拖动负载作用不能发挥最大效果。

在选择电动机容量的时候需要正确判断额定功率值,但在现实环境的影响下,额定功率地计算并不容易,它要求我们要了解并掌握好电动机相关依据、理论,并且通过合理分析及试验。电动机额定转速是按照经济、技术、使用数据决定,例如:在一个电动机运行过程中制动、启动次数变少就可用技术、经济两方面对电动机进行选择,而一个电动机运行过程中启动、制动次数多时即可用储蓄量来对电动机进行选择。

1.5安全保护

电力拖动系统所无法忽视的问题:安全保护,可分为电器保护、计算机保护两个方面。电器保护是最为简单的也是最为基础的,又可成为短路保护、过流保护、热保护、欠电压保护等等。

(1)短路保护:为防止因电流短路造成一些绝缘电气设备受到机械上故障或损坏状况,或是制止电流所产生电动应力作用下,使电动机绕线、延伸电路绕线以及其他的零件、设备受到损坏和故障。

(2)热保护:防止因为电动机运行时间长、电动机运行超载时间过长所产生出来大量热量的问题,因为这一些热量让绕线温度超过所规定正常温度范围最后破坏电动机运行,或让电动机未能正常运行工作。

(3)过渡保护:防止电动机在运行前出现无法准确的启动,又或者是电动机在运行前负载过大所形成电流量会破坏传动机的零件,让电动机受到故障、损坏状况。

(4)欠电保护:防止电动机电源电压下降过低,让电动机运行过程中,转速也慢慢降低甚至是停止运行造成电气设备的损坏、电路受损、故障的情况。

2电力拖动系统稳定运行的充要条件

众多电力拖动、电机和拖动、电机学资料及参考书中均给出一结论:电力拖动系统稳定的充要条伯为在T=TL外,。可是对于这个条件几乎示有证明或解释。以下内容对此条件作一些简单的说明。

2.1必要性

T=TL此条件表明在同一Ton平面作出电力拖动系统中电动机的机械特点与生产机械负载转矩特点两条曲线一定要有交点,系统可会运行稳定。如果未有交点则系统不可能会稳定。

2.2充分性

微分可近似以微小增量进行表示,即电力拖动系统稳定运行的充分条件可以近似表示:T=TL处,。以下对此条件作出解释性的说明:

(1)当△n>0,即系统为加速,并且满足了的条件。同时在不等式两边乘上大于0的△n,不等号方向保持不变,有△T<△TL,即:T+△T

(2)当△n<0,即系统为减速,并且满足了的条件。同时在不等式两边乘上小于0的△n,不等号方向转变,有,即。也根据电力拖动系统运动方程式可知系统为加速,最后系统达到新平稳以及稳定运行。

2.3系统稳定性的分析

按照上面条件的进行判断他励立直流电动机拖动恒转矩负载情况,知道△n>0,△T<0,满足了的条件,系统那可以稳定的运行。通过此项内容可判定各类电力拖动系统是不是处于稳定的状态中。

3结束语

通过上述的分析,可得出以下结论:正常工作中的他励直流电动机带三种典型的系统都可稳定运行;异步电动机如果在机械特性的工作带三种典型负载中也可运行稳定,可是如果在机械特性的非工作段中只有泵类负载时系统才可稳定;如果是因为电枢反应去磁作用强,导致他励直流电动机机械特性上翘,三种典型负载系统都不能稳定运行。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

基于可靠性状态监控的电力拖动监理研究

电力拖动作为占据主导地位的动力系统,检修水平的高低直接控制着生产系统的运行水平,从而决定收益水平。通过对检修体制的分析和审视,以实例对比,分析检修体制监理方法,提出在线监测法,提高了电力拖动系统的可靠性。

拖动即指以各种原动机带动工作机械(负荷)产生并完成运动,电力拖动即以电力为原动力的拖动系统。在各产业中,电力拖动提供了90%以上的原动力,在生产流程中占据基础而重要的核心点位。EPRI(ElectricPowerResearchInstitute,美国电力研究协会)2011年的报告指出:全美电力拖动系统消耗了19%的总能源,57%的电力能源;制造业中电力拖动消耗了70%以上的电能;过程工业中电力拖动消耗的电能占90%以上。每年度成本核算中,附加消耗分布为停产损失93.6%,附加能量消耗3.1%,电力拖动寿命降低1.2%,常规消耗2.1%。状态检测新方法的提出,有益于进一步降低维护及衍射费用,提升生产效率。

1电力拖动系统设备检修体制衍射

1.1事后维修RM/BM

特点是:“任其损坏”Reactive(Break-Down)Maintenance。

优点体现在:不必投资在状态监测上,不会出现过度维修,适用于少数非重点设备。缺点为:无法预测事故停机,产生设备二次损坏及灾难性后果,生产损失,高额维修费用,管理失控。

1.2预防维修PM/TDM

要点在于“定期体检”PreventiveMaintenance。优点体现在维修以可控制的方式在方便的时间进行,减少意外事故,有效避免灾难性事故,可更好的控制备件,节约资金。缺点体现在状态良好的设备也被频繁检修(维修过盛),维修导致的损伤可能大于维修的益处,仍存在计划外故障停机,没有针对不同设备进行优化与寿命分析。

1.3预测维修PdM

预测维修即PredictiveMaintenance,要点在于“没有故障就不修”。优点在于:减少意外停机,仅在需要时购买和使用所需备件,只需在适当时候进行维修。缺点在于:监测仪器、系统、服务、人员花费,不能延长设备寿命。

1.4主动维修PAM

即ProactiveMaintenance,要点在于“查明根源,精确维修,一切基于可靠性”。优点在于:设备寿命延长,设备可靠性增加,更少的故障及二次损坏,停机时间减少,总维护费用降低。缺点在于:监测仪器、系统、服务、人员花费,要求特殊技能,需要更多时间进行分析,全体员工改变观念

2状态监测朝向

2.1当前状况分析

EPRI报告中指出:一个新的资产管理的平台提高生产能力,依靠运行在收支平衡之上,生产中断不可容忍,世界级的生产运营需要可靠性维护。对应的管理策略应为合理利用现有设备,增加生产速度提高质量,增加有效生产时间,降低成本。维修部门从单纯的维修,逐渐转变成为确保企业生产能力的高级职能单元,维修费用占企业生产总成本的4%到14%,维修费用所占比例大于企业利润率。故障停机异常昂贵,远远超过维修费用。

2.2状态监测的目的

保护系统(保障运行,避免事故造成二次损伤)——预知维修(提前预警,减少非计划停机事件)——故障诊断(指导维修进程,实施精密维修)——根源分析(有目的地提高设备可靠性)。

2.3案例分析

美国总统轮船公司2001年8月16日安装检修状态监控系统。2001年8月21日TC1轴承失效(已使用10,000小时)。在海上更换轴承,耽搁时间。二次损伤,造成叶片和迷宫密封损伤(价值$180,000)包括产量损失与人工费用。到达港口后,更换整个轴系,浪费时间。

同样在轮船公司的案例中,预测维修经济效益评估可知,VTR714轴承每套USD20,000to25,000;VTR714轴系每套USD120,000to150,000。已知更换轴承推荐时间为10,000小时(16个月),17条船,实行状态监测4年,轴承更换时间由10,000小时提高到20,000(有些轴承达到30,000小时)。总的价值体现为:17×3台涡轮增压器xUSD20,000=USD1,020,000,其中未计算节省时间与人工的效益及二次损伤费用

3RCM

RCM战略即StrategyforRCM,包括设计与改造、设备与备件采购、备品备件库存保养、安装调试、操作与日常保养、运行调度、维修维护。衍射流程为设备改造—提高运行寿命—状态监测日常维护保养—状态监测—有计划的停机—定期维修—备用策略—事后维修。

RCM手段(InstrumentforRCM)包括红外诊断静态/动态电气诊断、机械振动分析、激光对中/现场动平衡、润滑油品分析、超声诊断、腐蚀检测/探伤和实现静态检测、动态巡检、在线监控

RCM收益(BenefitfromRCM)主要有提高产量(2-40%),减少维修费用(7-60%),提高产品质量(重新回炉生产&废品率减少5-90%),延长设备寿命(>1-10xlifeextension),减少零配件库存(10-60%),增加库存周转率(upto75%),减少成品库存,降低能耗(5-15%),提升生产安全及环境保护。

4故障分布与测试

4.1故障分布

根据EPRI的报告:电力拖动故障的53%源于机械原因,如轴承故障、不平衡、松动等;47%源于电气原因;这其中,10%源于转子,如铸件缺陷导致的不平衡气隙、断条等;37%源于定子绕组。阻抗不平衡导致的电力拖动系统效率的降低。阻抗不平衡导致功率因数的降低。阻抗不平衡导致电力拖动损耗。阻抗不平衡导致温度上升。附加的温升导致电力拖动系统寿命的降低。

4.2电气测试

静态电气测试SET包括:欧姆表/毫欧表、绝缘电阻计(DA/PI)、

高压绝缘测试仪、LCR测试仪、浪涌测试仪、静态电路分析(MCA)。

动态电气测试DET包括:电压表、安培表、功率表、数据采集器、电源质量分析仪、动态效率仪。

其他还有动态电信号分析(ESA)、动态机械测试DMT、红外分析、振动分析、超声诊断。

5电力拖动监测与管理系统的建立

维修策略的优化通过监控点的系统建立得以实现预知维修与监测进程,需要以下为电力拖动状态监测的时间间隔,以月为单位。台湾麦寮电厂拥有7台600MW火力发电力拖动组2台,12MW柴油发电力拖动组(备用)。实现的技术服务有SPMIntroduction(1998)、CMS用于涡轮增压机(1998)、便携式仪器A30-3(1999)、诊断服务(2001)。现在装备4台A30-3,整体监控点数7600点,远程监控2100点,“VCM+BMS”56点,“MG4toAMStoPRO46”软件72点。下一步装备6台Leonova,远程监控1445点,“MG4toAMStoPRO46”136点。通过系统的故障检点监测成形,有效地实现了检修管理技术的提升。

6结束语

电力拖动系统中检修水平的提升,除了依托于设备管理人员的技术水平外,通过在线检测方法,以先进的检测检修管理技术可以实现更加优化的资源配置和生产效率。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

探析电力拖动控制线路在安装中的运用

电力拖动是线路控制的主要方式,而在具有的实施中,要遵循一定的布线原则。随着科技的进步,电力拖动线路的应用领域不断扩展,对人们的生产和生活带来积极的效益。为了了解电力拖动控制在线路安装中运用,文章分析了其布线原则,阐述了其在电力系统安装中的过程,并且针对其存在的问题提出了电力拖动控制线路安装的创新。

电力拖动是线路控制的主要方式,基于此的线路拖动需在必要的原则下进行。为了促进电力拖动控制线路在安装中积极作用的发挥,文章举例说明了其应用过程和发展前景。

一、电力拖动控制系统介绍

(一)继电接触式断续控制

继电接触式断续控制操作方法简单,在电力拖动控制线路中得到广泛的应用。其以三相异步电力拖动系统作为主要系统,对于继电接触式断续控制系统的了解主要包括以下几个方面:了解线路图纸,进行线路安装规划。对于无法直观理解的元件,需要相关工作人员根据经验对其进行处理和分析。

(二)可编程无触点断续控制

可编程无触点断续控制应用也较为广泛,但其运行较为复杂,费用较高。其主主要原理为计算机的编程控制。但其能够有效的控制系统死接线的问题,对于线路控制智能化的实现具有推进作用。

二、电力拖动系统及其控制线路布线原则

设备性能的优化促进了社会劳动生产率的提高。随着科技的进步,我国的电力拖动技术广泛应用于农业、工业等领域。电力拖动控制系统是目前较为先进且应用广泛的系统,能够满足人们对电力的需求。在电力拖动控制线路的安装中,其布线要遵循一定的原则。首先是敷线操作,在安装前认真检查安全器件,确保其性能良好。在敷线过程中,要注意以下问题:防止两个端子之间出现接头,一旦出现则采取加装接线盒的方式,确保系统的稳定运行。同时,接线盒的安装有助于线路的维修和保养。并且,在安装接线盒时要预留适当长度的导线,为线路的安装和控制打好基础。然后进行线路的接线,接线过程要求线路连接完好。尽量使用单独的导线连接同一个元件,这样可以保证线路的稳定性。要求将其与器件的横截面积相对应,按照上小下大原则进行器件的排列。根据具体的施工状况和线路用途进行调整。另外,在导线长度的选择上,不宜过长或者过短,要满足线路额定电流的要求,同时避免浪费,将主、控电路进行正确的甄别和分类,避免线路重叠,在安装前要认真检查线路的外皮,确保其绝缘性良好,以免造成安全事故。

三、电力拖动控制线路在安装中的运用

(一)电力拖动控制线路的安装

目前,在很多生产设备中存在电力拖动线路,电力拖动线路在生产和生活中具有积极的作用。以电梯设计为例,它是应用位置控制与减速控而使电梯能够到位自停或迅速减速。在现代电梯设计中,线路的设计要保证其停在准确的位置。随着科技的进步,电力拖动控制线路应用于机械行业、建筑行业以及矿产业等行业。目前,其技术正在进一步发展,其积极作用逐渐体现出来。

(二)电力拖动控制线路安装过程中的问题

由于电力拖动控制线路安装较为复杂,且受限于现代电力拖动技术,常使得企业安装人员在安装过程中出现安装错误。如安装线路与图纸不符而到设备无法通电正常运行。一些员工无法正确的区分元器件的两个接线柱等问题,这一系列的问题都要求电力拖动安装过程要注重员工技术的培养,加强其对线路拖动的了解。另外,在电力拖动控制线路安装过程中,线路质量容易被忽略。很多企业直接进行安装而忽略了对线路绝缘性能的检验。

(三)电力拖动控制线路在实践中的创新问题

在探讨电力拖动线路安装过程中还存在缺乏创新的问题。基于电力拖动控制线路安装的复杂性,企业应对线路安装进行检查,对出现问题的线路及时进行改进。另外,还应不断地实现电力拖动线路的创新,改善传统的线路拖动中存在的问题。由于传统的线路拖动易出现粘连问题,造成线路绝缘性能下降,因此要实现其创新。其主要原因在于先给控制电源的电闸通电,导致线路在拖动过程中产生较大的电弧。因此我们对其采取创新措施。增设线路中的控制点,同时确保控制点之间不造成相互影响,设置多个信号灯来提示不同的线路损毁问题和安全隐患,确保启动点运行一致。电力拖动近年来取得了良好的效果,但在技术上和具体实施中都存在一定的问题需要解决。其中包括资源浪费问题,维修问题和线路的绝缘性能以及安装顺序问题等。总之,针对电力拖动控制线路在实践中存在的诸多问题,我们应对其进行必要的创新,从而使其在线路控制上起到积极作用。

四、总结

电力拖动技术对电力线路的安装具有积极的作用,但其实施过程较为复杂。电力拖动可以应用于建筑、机械、电力等多个领域,其技术随着企业改革而不断改进。当然,目前电力拖动技术还存在一定的问题,包括企业员工对电力拖动不了解等。基于此,电力拖动控制线路在安装中应进行不断改进和更新。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接