工业伺服节能改造,关于工业用的节电器信息聚合页,专注于工业用的节电器:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
您的位置:首页 > 工业用的节电器
节能改造关注问答
1、

电机轴承的选型

以前在订购设备或电机时,一般会指定电机轴承的品牌(轴承制造商),轴承的具体型号由电机制造商自己选择型号,毕竟轴承是门大学问,电机制造商选型会更专业!

根据我们使用和维护的经验,有以下几点:

1、国产低压电动机一般采用国内知名品牌的轴承(比如瓦轴、哈轴……),只要电机安装、联轴器联接精度满足要求,维护得当,轴承的使用寿命多会高于轴承的额定寿命。

2、通常情况下,功率大于等于22KW的电机前后轴承端盖必须要有加油通道和加油嘴,这样以后加油方便哈!毕竟此类功率的电机,体积较大、较重,拆卸端盖,维护轴承麻烦。

3、通常情况下,功率大于等于75KW电机轴伸端和非轴伸端要求有PT100测温传感器,以便将轴承运转的当前温度用数字仪表在现场显示并将温度信号接入dcs监控。

4、变频电机轴承前面有介绍,就不再重复。

5、高压电动机会直接指定采用正品的SKF轴承,因为高压电机基本都属于重要设备,如果采用质量等级底的轴承,一旦损坏,停产损失的费用、更换轴承、拆装电机的费用,估计能买一堆SKF轴承了。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

交流电机和直流电机调速方法

电机有两大类:交流电机、直流电机。交流电机中用得最多的是异步电机(感应电机),转别是鼠笼式异步电机。现德科斯TKS给大家介绍直流电机、交流电机调速方法。

1、直流电机调速方法:

直流电机是指将直流电送到直流电机,把直流电机的电能转换成机械能。这里首先要介绍如何将市电的交流电转换成需要的直流电。六十年代以前采用的是发电机--电机系统(F-D),这种方法只有在电机由专用的发电机供电时才有可能。另一种是可控硅--电机系统(SCR-D)。

直流电机的调速还比较方便,可以通过调节电枢供电电压,电枢中串联电阻,激磁回路串联电阻来实现。

可见直流电机调速有三种方法,而且调节电枢供电电压的方法容易实现平滑、无级、宽范围、低损耗的要求。直流电动机电磁转矩中的两个可控参量和是互相独立的,可以非常方便地分别调节,这种机理使直流电动机具有良好的转矩控制特性,从而有优良的转速调节性能。

尽管直流电机调速就其性能而言,可以相当满意,但因其结构夏杂,惯量大,维护麻烦,不适宜在恶劣环境中运行,不易实现大容量化、高压化、高速化,而且价格昂贵。

2、交流电机调速方法:

交流电机刚好相反。交流电机结构简单、惯量小、维护方便,可在恶劣环境中运行,容易实现大容量化、高压化、高速化,而且价格低廉。

从节能的角度看,交流电机的调速装置可以分为高效调速装置和低效调速装置两大类。高效调速装置的特点是:调速时基本保持额定转差,不增加转差损耗,或可以将转差动率回馈至电网。

低效调速装置的特点是:调速时改变转差,增加转差损耗。

高效调速方法包括:改变极对数调速—鼠笼式电机变频调速—鼠笼式电机串级调速—绕线式电机换向器电机调速—同步电机。

低效调速方法包括:定子调压调速—鼠笼式电机电磁滑差离合器调速—鼠笼式电机转子串电阻调速—绕线式电机。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

三相异步电动机有几种制动方式

三相异步电动机切除电源后依惯性总要转动一段时间才能停下来。而生产中起重机的吊钩或卷扬机的吊蓝要求准确定位;万能铣床的主轴要求能迅速停下来。这些都需要对拖动的电动机进行制动,其方法有两大类:机械制动和电力制动。

1.机械制动

采用机械装置使电动机断开电源后迅速停转的制动方法。如电磁抱闸、电磁离合器等电磁铁制动器。

1.1.

电磁抱闸断电制动控制电路。

原理分析:合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。断开开关电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。

倒顺开关接线:这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动)等。其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。

1.2.电磁抱闸通电制动控制电路

电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。

机械制动主要采用电磁抱闸、电磁离合器制动,二者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开),克服弹簧的拉力而满足工作现场的要求。电磁抱闸是靠闸瓦的摩擦片制动闸轮,电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。

2.电力制动

电动机在切断电源的同时给电动机一个和实际转向相反的电磁力矩(制动力矩)使电动迅速停止的方法。最常用的方法有:反接制动和能耗制动。

2.1.反接制动

在电动机切断正常运转电源的同时改变电动机定子绕组的电源相序,使之有反转趋势而产生较大的制动力矩的方法。反接制动的实质:使电动机欲反转而制动,因此当电动机的转速接近零时,应立即切断反接转制动电源,否则电动机会反转。实际控制中采用速度继电器来自动切除制动电源。

反接制动控制电路,其主电路和正反转电路相同。由于反接制动时转子与旋转磁场的相对转速较高,约为启动时的2倍,致使定子、转子中的电流会很大,大约是额定值的10倍。因此反接制动电路增加了限流电阻R。KM1为运转接触器,KM2为反接制动接触器,KV为速度继电器,其与电动机联轴,当电动机的转速上升到约为100转/分的动作值时,KV常开触头闭合为制动作好准备。

反接制动分析:停车时按下停止按钮SB2,复合按钮SB2的常闭先断开切断KM1线圈,M1主、辅触头恢复无电状态,结束正常运行并为反接制动作好准备,后接通KM2线圈(KV常开触头在正常运转时已经闭合),其主触头闭合,电动机改变相序进入反接制动状态,辅助触头闭合自锁持续制动,当电动机的转速下降到设定的释放值时,KV触头释放,切断KM2

线圈,反接制动结束。

一般地,速度继电器的释放值调整到90转/分左右,如释放值调整得太大,反接制动不充分;调整得太小,又不能及时断开电源而造成短时反转现象。

反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。因此适用于10KW以下小容量的电动机制动要求迅速、系统惯性大,不经常启动与制动的设备,如铣床、镗床、中型车床等主轴的制动控制。

2.2.能耗制动

电动机切断交流电源的同时给定子绕组的任意二相加一直流电源,以产生静止磁场,依靠转子的惯性转动切割该静止磁场产生制动力矩的方法。

原理分析

电动机切断电源后,转子仍沿原方向惯性转动,如图五设为顺时针方向,这时给定子绕组通入直流电,产生一恒定的静止磁场,转子切割该磁场产生感生电流,用右手定则判断其方向如图示。该感生电流又受到磁场的作用产生电磁转矩,由左手定则知其方向正好与电动机的转向相反而使电动机受到制动迅速停转。

可逆运行能耗制动的控制电路:KV1、KV2分别为速度继电器KV的正、反转动作触头,接触器KM1、KM2、KM3之间互锁,防止交流电源、直流制动电源短路。停车时按下停止按钮SB3,复合按钮SB3的常闭先断开切断正常运行接触器KM1或KM2线圈,后接通KM3线圈,KM3主、辅触头闭合,交流电流经变压器T,全波整流器VC通入V、W相绕组直流电,产生恒定磁场进行制动。

RP调节直流电流的大小,从而调节制动强度。

能耗制动平稳、准确,能量消耗小,但需附加直流电源装置,设备投资较高,制动力。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


4、

发电机节能运行技术浅析

一、发电机运行中功率因数过高或过低造成的危害

发电机额定功率因数过高实际上是指当发电机同时在额定有功功率和额定视在功率运行工况(一般在滞相方式)下运行时的功率因数值,同样的额定有功功率机组,如果其额定功率因数越低,则说明运行时带无功的能力相对较强,机组额定电流也增加,从而使造价增加。

一般发电机额定功率因数均为0.9左右。

发电机运行中,从理论上讲,在同样的机端电压下,如果在同样的有功出力下,功率因数越高,那么所发的无功越少,发电机电势就越低,发电机的静态运行稳定水平下降。

发电机运行中,如果要降低功率因数至额定值以下,则必须降低其有功出力,以使定子和转子电流不超限,既不经济,又不安全。这种运行方式往往在当系统发生事故,无功缺额较为严重,要求发电机减发有功增发无功时出现。

二、发电机定子冷却水系统与发电机经济运行的关系

发电机冷却水系统主要是向发电机的定子绕组和引出线不间断提供水源。其优点是水热容量大,有很高的导热性能和冷却能力,水的化学性能稳定,在高温下不会燃烧,调节也方便,冷却均匀等。

发电机定子的冷却水必须具有很高的工作可靠性,否则会使发电机组降低负荷运行,严重时危害发电机正常运行。因此,对冷却水的质量有较高的要求,很低的机械杂质,电导率不大于2vs/em、PH值在7~8之间、硬度不大于2vg当量/L、含氧量尽可能减少。

三、火力发电机增容改造有哪些途径

1、提高定子线及转子绕匝间等绝缘强度。经发电机绝缘鉴定,其机械性能和介电性能变坏,电气强度降低的发动机当需要更换上、下层定子线棒时(温度计算实验决定),可将定子线棒的绝缘材料由原B级绝缘改为F级,其线槽部换为绝缘用浸漆的适型材料,加强绝缘及黏结。线棒绝缘包扎采用以提高线棒的绝缘质量,提高转子集电环及引线、槽绝缘、排间绝缘、楔厂,垫条、大护环绝缘等。

2、交换定子线棒,增大铜线截面积。经发电机温升计算和实验,定转子绕组铁心温度裕度不够,以及为提高发电机效率、降低定子绕组的线电流密度、进一步降低定子铜耗,可更换定子全部上、下层定子线棒,参照引进技术同级电压绝缘厚度增大铜线截面积。

3、发电机加装铜屏蔽及管道水冷却,降低端部损耗,降低端部主要结构件温度。

4、其他有缺陷的部件改造。

四、提高氢冷发电机的某些参数可以提高发电机效率

氢气压力越高,氢气密度就越大,其导热能力就越高,因此,在发电机各部位温升不变的情况下,能够散发出更多的热量,发电机的效率就可以提高。特别是对氢内冷发动机效率更明显。

氢气的纯度过高,则发电机消耗的氢气量越大,越不经济。但是,氢气纯度过低,会因为含氢量减少而使混合气体的安全系数降低。因此,氢气的纯度按容积计算需保持在96%~98%,气体的混合物中含氧量不超过2%。

氢气的湿度是影响发电机绝缘的主要因素,氢气湿度越大,越使发电机绝缘强度降低,使发电机绝缘不达标,影响发电机正常运行,严重时使匝间短路而损坏发电机。

五、影响补氢率的主要因素

补氢率是指为维持氢冷发电机运行氢压需每天补充的氢量。

1、发电机内冷水系统泄漏,氢漏入内冷水中;

2、发电机密封油油压低、氢油分离设备失灵,氢进入油系统;

3、氢压表管堵塞或表计失灵;

4、发电机端盖、出线密封(密封母线)不良;

5、氢系统管道、阀门、仪表接头等处外漏;

6、发电机氢系统补氢阀等阀门不严,造成内漏。

六、降低补氢率的措施

1、大修后或进行消除漏氢缺陷工作的发电机,启动前应进行整体气密性实验,实验持续24h(特殊情况不少于12h)。气密性实验最大允许漏氢量应符合标准或生产厂家技术要求。

2、发电机实际漏氢量应每月定期测试一次。测试计算方法执行国家电力公司标准《汽轮发电机运行规程》(1999年版)。

3、用检漏仪器或其他方法查找漏氢点,设法消除。当密封母线内含氢量超过1%时,应立即停机查漏。当发电机轴承油系统或主油箱内氨气体积含量超过1%时,应立即停机查漏。当内冷水系统出现氨气时,应尽快安排停机处理。

4、保持发电机密封油油压高于氨压在规定运行范围内,否则应降低氨压运行。

5、发电机氨系统补氨阀等阀门不严造成内漏时,应设法消除。

七、低电压对经济和安全运行的危害

1、烧毁电电机。电压过低超过10%,将使电动机电流增大,线圈温度升高,严重时使机械设备停止运转或无法启动,甚至烧毁电动机;

2、灯发暗。电压降低5%,普通点灯的照度下降18%;电压下降10%,照度下降35%;电压降低20%。则日光灯无法启动;

3、增大线损。在输送一定电力时,电压降低,电流相应增大,引起线损增大;

4、降低电力系统的静态及暂态稳定性。由于电压降低,相应降低线路输送极限容量,因而降低了稳定性,电压过低可能发生电压崩溃事故;

5、发电机出力降低。如果电压降低超过5%,则发电机出力也要相应降低;

6、影响电压的稳定性。如果区域性无功补偿不足,无功的缺额只能由电压降低来补偿,导致无功缺额越来越大,电压越来越低,直至崩溃。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


5、

水泵电机节能方案

1、采用尼龙平皮带用尼龙平皮带来替换三角橡胶带

简单易行,技术上无特殊要求,只需进行简易计算,更换一副皮带轮即可。若条件允许,把电动机的间接传动,改为直接传动的水泵,可提高效率2~3%。

2、更换节能电动机

①应用Y系列(基本系列)电动机

采用Y型节能电动机,取代60年代J2、JO2产品。采用国际标准,提高效率水平,和堵转转矩,缩小体积,增加对电流噪声,振动的控制,而且还有结构合理,选型美观,通用性好,寿命长等特点。

②采用YX(派生系列)高效率电动机

该系列属低损耗,高效率电动机,机座中心高为H100-H280;功率范围为1.5kW-90kW;极数2、4、6。比Y系列电动机效率平均提高3%,损耗平均下降28.6%,与目前国外高效率电动机水平相当。不过这类电动机售价比Y系列高30%。此种电动机值得年运行时间长,负荷率高的纺织、化工、风机、水泵等选用。

3、水泵电动机的节能改造

①更换为节能风扇电机的通风损耗占总损耗的很大比例,因此,最大限度地降低通风损耗,对节能会有明显的效果。而且对JO2来讲,改造外风扇与风罩不需变动内部任何部件。

②用磁性槽泥(简称CC材料或磁泥)替换普通槽楔,填平电动机定子铁心槽口趋于平滑,经固化后,且与糟壁结合牢固,而成磁性槽楔。从而改善电机槽齿效应,降低了铜、铁、机械、杂散等损耗,给耗能电动机的改造提供了节电新途径。

4、采用较大截面的导线

采用较大截面导线后,不仅处于轻载运行状态,寿命也会大大延长,节电效果显着(采用铜芯电缆等法)。

5、注意轴承和绕组的清洁和润滑

轴承合理润滑与绕组的清洁正确地安装和良好地维护,能使电动机在运行中节能。

润滑脂过量或劣质,会增加摩擦损耗,降低效率;并会使油甩到绕组上,损坏绕组。因此,检修时应适当填充润滑脂,并采用优质锂基润滑脂。与此同时,还要防止潮气和有害气体侵入电动机内部,保持绕组温度在零度以上。

6、采用无功功率自动补偿

水泵电动机的负荷是感性的,其电流矢量滞后于电压矢量。这类负载消耗有功功率外,还消耗无功功率,而消耗无功功率大于有功功率。提高cosφ的办法,是在负载两端并联与感抗性质相反的电容器,用容性无功功率(负的)来抵消感性无功功率(正的)。实际上,电感和电容器中的无功功率波动过程恰好互差180°。即电感线圈吸收能量时,正好电容器释放能量,而电容器吸收能量时(充电过程),正好线圈释放能量。由于并联电容器具有这一特点,被广泛运用在输、变、配等电器设备中提高力率。

补偿方法:在无功功率自动补偿应用中,得出经验公式:电容器的无功运行电流,为电动机负载运行电流的56%。

7、采用S10型节能变压器

电动机力率的提高直接关系到电力变压器的容量型号的合理选用,和无功补偿等诸因素的制约,因此,从节电角度来看。重要的是应尽快以S7、SL7、SZ7、SLZ7系列10~35kV级变压器,取代SL及SL1系列耗能变压器、采用45°全斜接缝,无冲孔,玻璃纤维带绑扎,铁芯选用优质晶粒取向冷扎硅钢片。绕组导线选用缩醛漆包线。以及片状散热器等新材料、新结构、新工艺,它与相同等级老型号变压器相比,具有损耗低,体积小,重量轻,节约电能,节省运行电费等优点。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


6、

用单片机产生矩形波经放大电路放大后驱动电机

采煤机再制造工艺实践工作为今后采煤机的再制造以及煤机装备的循环利用打下了坚实的基础。控制模块设计与分析,硬件控制模块设计采用N沟道MOS管IRF540驱动,该电路功耗小,驱动能力较好,成本较低,在PWM输出端与驱动端之间加入了光电耦合器,使控制电路与驱动电路隔离,有效保护了控制装置。

PWM输出模块PWM相对线性控制具有节能、易控制、提高电机运行效率的特点,采用PWM电路控制电机。用单片机产生矩形波,经放大电路放大后驱动电机。该方案优点是不需要另搭外围电路,通过编程即可改变输出矩形波占空比,从而控制电机。PWM产生及占空比控制,使用单片机产生PWM时,本文先后采用了两种方法,一种是编写延时由直接输出,另一种是使用定时器,通过周期延拓的方式输出PWM波。但是IO口直接输出的方式在控制占空比时不够精确,因此而采用键盘控制时,使用了外部中断来控制占空比。

使用了三个独立键盘,分别控制占空比增加、占空比减小以及特定占空比(45°时的占空比)。使用单片机、步进电机验证了单片机控制模式方案设计,采用的测试仪器有示波器、数字万用表、秒表等测试设备。测试结果表明当加占空比键按下后,转动角度值变大;减占空比键按下后,转动角度值值变小。实验证明占空比控制非常重要,也证明了PWM波的频率对响应速度有很大影响,同时验证了方案的可行性,为微量注射泵控制系统设计具有一定的参考价值。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

电机扭矩试验台的结构组成

电机微扭矩检测试验台主要分硬件部分和软件部分,硬件部分由气缸、伺服电机、伺服卡、采集卡、工控机等来协调待测EPS电机的运转。软件部分主要是驱动伺服、气缸协同工作,控制设备的运行来完成检测,并从采集卡实时采集角度、扭矩传感器输出电压等数据参数,根据各项试验的数据绘制图表报告,计算产品损耗扭矩、波动扭矩,并标定产品是否合格。

测试台硬件本试验的硬件部分主要是来控制扭力传感器和电机、气缸的协调动作,实时进行数据采集,主要包含如下部分:

(1)气缸:测试过程开始前将伺服与待测EPS电机键槽推送到位。

(2)伺服电机:用来控制待测EPS电机的转动,并反馈角度。

(3)采集卡:用来采集各项实时参数,包括角度、扭矩。选用NIPCI6280采集卡。

(4)伺服卡:用来驱动伺服电机,精准控制电机运行动作。

选用研华PCI1240U(四轴)伺服卡。

硬件部分的工作原理主要是根据所确定的动作来完成。采用多功能采集卡进行模拟、数字信号的输入输出采集,伺服卡控制电机的各种运动状态(不同转速、方向)。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

电机扭矩试验台的软件功能

电机扭矩测试台软件主要是控制硬件部分协同工作,控制伺服转速、方向,控制气缸松开、压紧,并实时采集输出信号数据,将所数据实时保存并绘制测试报告,以反映各参数之间的特性,并完成数据的分析处理。

软件主要有如下几个模块:

(1)数据存储模块:系统运行配置文件存储为ini配置文件;EPS电机的基本参数信息、伺服控制参数、实时采集数据等存放于SQLSERVER数据库,方便查询修改。

(2)基本设置模块:主要用来设置包括转速、产品型号、产品名称、判定参数、采集卡的各模拟量、数字量和计数器采集通道与实际参数的对应关系,以及用于测试绘制图表的各项坐标参数值如:角度、电压等。产品编号支持自动编号和扫描枪输入。

(3)权限管理模块:因系统配置比较灵活,为避免不恰当的误操作,以及测试数据结果的保密要求等分配相应的权限。

(4)测量功能模块:启动测试后将按照规定的流程进行一次完整的检测并计算测试结果、绘制图件报告,测试过程中可以手动干预退出检测。

测试程序流程如下:

①检测EPS电机是否安装,自动寻找起测点。

②伺服逆时针回转45°,稳定200ms,然后顺时针转动45°,并启动采集线程,实时绘制扭矩与角度关系曲线;伺服先回转45°是为了消除伺服启动过程加速时造成扭矩跳动,影响测试的真实性。

③伺服顺时针回转45°,稳定200ms,然后逆时针转动45°,并启动采集线程,实时绘制扭矩与角度关系曲线。

④正反行程测试完成后,伺服电机回到系统初始零位并松开气缸,根据测试数据计算正、反形成的损耗扭矩和波动扭矩,与基准值比较后判断产品是否合格。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

印刷机调整中电机的工作状态

丝网印刷间距调整系统电气包括间距调整电机、固态继电器、浪涌吸收器、终端继电器、交流电源等。与固态继电器接通的直流电源的电压为24V,与间距调整电机接通的交流电源的电压为110V。其中上、下限位传感器的开关量输出端与PLC输入模块连接,按钮开关接在PLC工作电源与PLC输入模块之间,PLC输出模块与固态继电器的线圈相连,PLC输出模块根据输入到PLC输入模块的开关量信号而输出控制信号来控制固态继电器的直流工作电源,固态继电器的触点接入间距调整电机的工作电源回路上,通过PLC程序控制间距调整电机的运转来调整丝网印刷间距,在上、下限位置之间具体的间距值由百分表直接读取。由上、下限位传感器限定丝网印刷间距的调整范围。

浪涌吸收器与固态继电器并联相接后串联接至间距调整电机,用来吸收固态继电器高频通断时产生的浪涌电压。终端继电器与PLC输出模块相连,其触点接入间距调整电机的工作电源回路。

PLC程序利用间隙刹车信号来控制间距调整电机刹车装置,消除传动结构的惯性影响。

当丝网印刷间距为下限时,PLC程序控制仅上升按钮开关能起作用,继而只可以上调丝网印刷间距;反之,当丝网印刷间距为上限时,PLC程序控制仅下降按钮开关能起作用,继而只可以下调丝网印刷间距;当丝网印刷间距处于间距下限和上限之间,则既可上调也可上调丝网印刷间距。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接