工业伺服节能改造,关于苏州高新区化工节能设备有限公司信息聚合页,聚合苏州高新区化工节能设备有限公司:节能产品、节能设备、节能技术、节能方案等信息;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
节能改造关注问答
1、

受转速影响导致器具受的总扭矩M不能保持恒定

由于切割元件的存在,方式三与方式一存在相似的问题。在U额定时工具上的额定扭矩M其实有两部分:切割元件的转矩M1和测功机的扭矩M2,仪表显示的即M2。电压变化时M2保持不变,而M1的大小受转速影响导致器具受的总扭矩M不能保持恒定。导致了测试到的效率比实际效率偏低。对于额定扭矩本身就很小的器具,扭矩的微小变化便会引起测量结果的较大差别。所以方式三仍不符合标准要求。正常工作时的运动部件,如砂轮片等具有散热功能,如果试验过程中不安装会导致温升增加,故试验时应安装类似部件,以模拟实际工况。

砂轮片部件被认为是没有旋转不平衡量的,否则一方面加载扭矩不恒定,另一方面由于不平衡引起的转矩变化对温升的影响会抵消甚至远大于其散热对温升的影响。对手持式割草机温升测试结果有影响的,不仅是器具本身,试验过程中的各种不当因素也会造成试验结果的不准确,其中以加载方式的影响尤为明显。

在温升测试中,根据实际情况决定是否安装正常工作需带的旋转部件时,应首先保证部件的不平衡量不会影响到加载扭矩的恒定保持。对手持式割草机温升测试,切割元件和带切割元件同时连测功机的加载方式均不宜采用。仅连测功机的加载方式是符合标准要求的,当对试验结果有疑义时,应以此为准。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
2、

直流无刷电机中输入脉冲的分析

有限转角直流无刷电机的输入为脉冲宽度调制(PWM),凭借改变PWM的占空比来改变流经电机电流的方向,以此来改变电机的转速与转向,由于加在电机电枢上的是PWM波形,即一系列方波形式的电压波形,所以建模首要的一步就是如何将PWM波与电机正常运转时电枢两端的电压、电机电流、电机旋转角速度以及电机旋转角度等建立联系。

模型主要由3个主要的处理模块组成,即PWM解析模块,电流计算模块以及角度计算模块。

电机的输入激励信号都是标准直流或交流电压信号,而在这里有限转角直流无刷电机的输入激励信号是PWM方波,因此建模的首要任务是如何建立PWM方波信号与电机电枢两端电压的关系,这也是整个建模的难点。

由于PWM是靠改变自身高低电平的占空比来控制电流的正负以及电机的正反转,所以经过综合考虑,决定采用对输入PWM提出了进行采样并计数的方法建立PWM与电机电枢两端电压关系的建模新思路,定时进行计数值的存储与计数值的清零。一般来说,采样时钟频率大约为PWM时钟的6-10倍,即每个PWM周期要采样6-10次,以保证采样精度。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
3、

变频电机轴电压与轴电流的产生机理分析


3.轴承模型与轴承电流的产生由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均由一个轴承支撑,其结构如图3所示。以其中一个轴承为例,轴承的滚道由内滚道与外滚道组成,当电机转动时,轴承中的滚珠被润滑油层包围,由于润滑油的绝缘作用,轴承滚道与滚珠之间形成电容,如图3b)所示。这两个电容在转子-定子回路中以串联形式存在(为便于分析,不考虑滚珠的阻抗),可以等效成一个电容cbi,i代表轴承中的第i个滚珠。对于整个轴承而言,各个滚珠与滚道之间的电容以并联形式存在。所以整个轴承内可以等效成一个电容cb。据对轴承的分析,轴承可用一个带有内部电感和电阻的开关来等效。当滚珠未与滚道接触时,开关断开,转子电压建立;当转子电压超过油膜门槛电压时,油膜击穿开关导通,转子电压迅速内放电,在轴承内形成较大放电电流。va、vb和vc为电机三相输入电压,l’、r’和c’为输入电压耦合到转子轴的等效集中参数,cg为crf和cb并联后的等效电容。当轴承滚珠和滚道接触或者轴承内油层被击穿时,cb不存在,此时cg仅代表转子轴对机壳的耦合电容。电容cb是一个多个变量的函数:cb(q,v,t,η,λ,λ,εr)[2]。其中q代表功率,v代表油膜运动速度,t代表温度,η代表润滑剂粘性,λ代表润滑剂添加剂,λ代表油层厚度,εr代表润滑剂介电常数。轴承电容cb与定子到转子耦合电容csr,比定子到机壳耦合电容csf和转子到机壳耦合电容crf小得多。这样一来,耦合到电机轴承上的电压便不至于过大,这是因为crf与cb并联后的电容比耦合回路中与之串联的csr大得多,而串联电容回路中,电容越大承受的电压反而越小。事实上,根据分布电容的特点,很大一部分共模电流是通过定子绕组与铁芯之间的耦合电容csf传到大地去的,因此轴承电流只是共模电流的一部分。从图4可看出,形成轴承电流有两种基本途径。一是由于分布电容的存在,定子绕组和轴承形成一个电压耦合回路,当绕组输入电压为高频pwm脉冲电压时,在这个耦合回路势必产生dv/dt电流,这个电流一部分经crf传到大地,另一部分经轴承电容cb传到大地,即形成所谓的dv/dt轴承电流,其大小与输入电压以及电机内分布参数有关。二是由于轴承电容的存在,电机轴上产生轴电压,当轴电压超过轴承油层的击穿电压时,轴承内外滚道相当于短路,从而在轴承上形成很大放电电流,即所谓的电火花加工(electricdischargemachining-edm)电流。另外,当电机在转动时,如果滚珠和滚道之间有接触,同样会在轴承上形成大的edm电流。为了定量edm及dv/dt电流对轴承的影响,轴承内的电流密度十分关键。建立电流密度需估计滚珠与滚道内表面的点接触区域。根据赫兹点接触理论(hertzianpointcontacttheory),轴承电气寿命可用如下公式求得[2]:eleclife(hrs)=(7)式中,代表轴承电流密度。一般而言,dv/dt电流对轴承寿命影响很小,而由edm产生的轴承电流密度很大,使得轴承寿命大大降低。另外,空载时轴承损坏程度反而比重载时大得多,这是因为重载时轴承接触面积增大,无形中减小了轴承电流密度。

4.轴电压与轴承电流的仿真分析为进一步讨论轴承电流与pwm逆变器输出电压特性以及电机端有无过电压之间的关系,本文对dv/dt电流与edm电流两种形式的轴承电流分别进行仿真分析,结果发现,轴承电流不仅与逆变器载波频率有关,且与逆变器输出脉冲电压的上升时间有关,同时当电机端出现过电压时轴承电流明显增加。先假定电缆长度为零,根据轴承电流的存在形式可知,dv/dt电流主要是由输入跳变电压引起,因此dv/dt电流大小与逆变器载波频率和电压上升时间有关。逆变器载波频率越高,一个正弦波周期内产生的dv/dt电流数量也就越多,但此时电流幅值不变。脉冲电压上升时间是影响dv/dt电流幅值的决定性因素,另外分布电容的大小也影响dv/dt电流幅值。而edm电流产生的直接原因是轴电压的存在,因此轴电压的大小决定了edm电流幅值,轴电压的大小决定于输入电压的大小及电机内分布电容的大小。虽然逆变器载波频率和脉冲电压上升时间都会影响轴电压的形状,但轴电压的峰值与二者都没有关系,因此edm电流与二者也没有本质的联系,这是edm电流与dv/dt电流最大区别之处。当然,edm电流还与轴承油层的击穿电压有关,击穿电压越高,产生的edm电流越大。为讨论方便,假设轴承击穿电压大于或等于轴电压。

4.1改变上升时间tr仿真得到不同上升时间的轴电压与轴承电流波形如图5所示,其中图a)和b)为轴电压波形,图c)和d)为轴承电流波形,电流波形中第一次出现振荡的为edm电流,其他为dv/dt电流。由分析可知,1)tr增大轴承电流减少,包括dv/dt电流与edm电流。尤其是dv/dt电流幅值减小十分明显,但tr对edm电流的影响不大,这主要是因为edm电流由轴电压以及轴承阻抗决定;2)当tr小于一定值(约为200ns)后,dv/dt电流甚至高于edm电流;3)改变上升时间对轴电压的影响不大;4)特殊现象:轴电压在电压击穿时出现两次振荡,tr不影响第一次振荡,但影响第二次振荡,且第二次振荡随着tr的上升而减少,其原因是轴承短路后定子绕组到转子的耦合路径依然存在,所以出现一个dv/dt电流振荡。

4.2改变耦合参数及轴承参数定子绕组对转子的耦合电容越大,轴电压越高,dv/dt电流与edm电流均增加;轴承电容减小,dv/dt电流减小;但edm电流基本不变,此时轴电压上升。其原因是:在共模电路中,轴电压是由定子绕组对转子铁心的电压耦合造成的,维持这一电压的存在靠轴承电容以及转子对机壳耦合电容。由于后两者并联,再与前者串联,因此轴电压按电容值进行分配,电容越大压降越小。一般情况下,轴承电容与转子对机壳耦合电容比定子绕组对转子耦合电容大得多。在只改变轴承电容的情况下,轴承电容越小,整个并联电容等效值下降,轴电压反而上升,由于轴承上的dv/dt电流与容抗及dv/dt成正比,在dv/dt不变时,容抗减小,dv/dt电流下降。仿真结果如图6所示。

5.抑制办法从前面的理论研究和仿真分析可以看出,电机轴承电流产生的一个主要原因是逆变器输出的高频脉冲具有过高的dv/dt前后沿,由此可知,抑制轴承电流的有效办法就是降低逆变器输出电压的dv/dt。但是,逆变器本身输出的脉冲电压上升时间是由功率器件的开关特性决定的,因此只能在逆变器输出端附加装置改变其输出电压的dv/dt。降低逆变器输出电压上升沿dv/dt的一个最直接的办法是在逆变器输出端串上大的电抗器,即可构成所谓的“正弦波滤波器”,逆变器输出的脉冲电压在经过大电抗器后成为完全的正弦波电压,这样便可以消除轴电压与轴承电流。但是这种办法的代价是电抗器的功率损耗大,体积大,造价高,在普通的变频调速系统中应用不是很合适。本文采用折中办法,在逆变器输出端串接电感值不大的电感以抑制电流的快速变化,同时在输出端线间设置rc电抗以吸收输出电压的高次谐波,这样可以适当降低输出脉冲电压上升沿的dv/dt值,达到抑制轴承电流的目的。逆变输出滤波器降低了电机输入脉冲电压的电压上升率,这样一来,电机内分布电容的电压耦合作用便会大大减弱,轴电压以及由此引起的edm电流都会下降,同时由于电压变化率引起的dv/dt电流也会明显减少,因此滤波器可以有效地抑制轴承电流的产生。图8给出了加入滤波器(未接地)前后的电机轴承电流仿真波形,其中,逆变器载波频率为5khz,脉冲电压上升时间为200ns,电缆长100m。从图中可以看出,无论edm电流还是dv/dt电流都明显减少。仿真中还发现,将滤波器接地,无论dv/dt电流还是edm电流相对不接地而言均显着减少,其原因是rc吸收高次谐波的作用更强,能够更好地改善电压波形。

6.在高频pwm脉冲输入下,电机内分布电容的电压耦合作用构成系统共模回路,从而引起轴电压与轴承电流问题。轴承电流主要以三种方式存在:dv/dt电流、edm电流和环路电流。轴电压的大小不仅与电机内各部分耦合电容参数有关,且与脉冲电压上升时间和幅值有关。本文着重讨论前两种方式的轴承电流。dv/dt电流主要与pwm的上升时间tr有关,tr越小dv/dt电流的幅值越大。逆变器载波频率越高,轴承电流中的dv/dt电流成分越多。edm电流出现存在一定的偶然性,只有当轴承润滑油层被击穿或者轴承内部发生接触才可能出现,其幅值主要取决于轴电压的大小。以降低脉冲电压上升率为原则,设计一种在逆变器输出端串小电感并辅以rc吸收网络达到抑制轴电压与轴承电流的目的,仿真结果验证了该方法的有效性。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
4、

异步电动机转矩控制软起动仿真

软起动技术有利于改善异步电动机起动过程中产生过大电流问题,本文详细分析、比较了变频、液阻和晶闸管串联等软起动方法的特点,采用晶闸管串联技术和转矩控制策略,实现异步电动机固态软起动。利用MATLAB/SIMULINK对转矩控制闭环系统建立了仿真模型并进行了仿真实验,仿真结果表明采用转矩控制方式,软起动装置能够很大程度地降低起动转矩和起动电流,能够很好地控制异步电动机的启动过程。


1引言

鼠笼式异步电动机在全压直接起动时,起动电流可以达到额定电流的5-7倍,会造成电动机绕组因过流引起过温,从而加速绝缘老化。同时,硬起动造成的过电流也势必会造成电网电压急剧下降,影响其他电力设备的正常使用,且电网电压的急剧下降,使起动转矩减小,有造成起动失败的可能性。异步电动机降压起动目前应用比较普遍的有:串电阻或者串电抗起动、Y—△起动。自藕变压器降压起动等方法。这些传统降压起动方法很大程度上缓解了大容量电机在相对较小容量电网上起动时的矛盾,但是它们只是降低起动电流冲击,并没有从本质上解决问题,而且还造成起动转矩同时在减小,在切换瞬间还会产生二次冲击电流。近年来,随着电力电子技术的发展,使无电弧开关和连续调节电流成为可能。为电动机的起动提供了全新的思路,从而出现了电机软起动技术。晶闸管串联式的高压软起动器应运而生,如美国的BS公司。英国的CT公司。法国的TE公司、瑞典的ABB公司等软起动器系列产品已成为市场的主流。其中美国的BS公司采用晶闸管串联技术生产的重压6~13.8KV软启动器,最大功率可以达10MV。国内的中源ZY—FR1000系列软启动器性能达到国际先进水平,湖北省万洲电气有限公司WGQH系列高压固态软启动器也具有国内先进的水平。

2软起动方法

2.1变频启动

变频器用于交流电机起动,起动电流小、起动力矩大、调速曲线平滑调速范围大、运行平稳,起动速度快,是交流电机理想的起动方式。但是,高压变频器更适用于需要调速的电机系统,且价格高昂,单纯做软起动装置使用太浪费。

2.2液阻式降压软起动

2.2.1液阻软起动

液阻式一种由电解液形成的电阻,起到点本质是离子导电。电解液中有两个导电极板,即固定板和动级板,伺服系统控制动级板得距离来改变起动电阻值。

2.2.2热变电组软起动

与液阻的主要区别在于电机不动,热变电阻呈现明显的负温特性。

液阻式软起动装置的不足时电机起动时,液体电阻发热,要消耗一定的电能,且不适合频繁起动场合。但因其投资少,性能好(无级控制,热容量大),不会产生谐波影响电网,使用于高压发大功率和重载起动。

2.3磁饱和电抗软起动

磁饱和电抗器的等效电抗值是可控的,它利用铁心的饱和特性,通过改变直流励磁改变其电抗参数,可以实现电流闭环控制,且可实现软停车。与高压晶闸管软起动相比,其缺点是控制快速性比较差,噪声较大,也会产生一定的高次谐波。

2.4开关变压器软起动

用开关变压器隔离高压和低压,通过改变其低压绕组上电压来改变高压绕组上的电压,从而达到改变电机端电压的目的,以实现软起动。不必采用晶闸管串联技术,可靠性大大提高,且谐波很小。此外,电压电流可全范围调节。可构成闭环控制,时间常数小,反应迅速。

2.5晶闸管串联软起动调压电路,

在高压电网和电动机之间接入反并联晶闸管通过控制晶闸的触发角进行斩波,起到调压作用。由于单只晶闸管还不足以高压,所以采用串联技术,例如在设计6KV高压软起动装置的时候功率单元常采用3只晶闸管串联的方式提高耐压值。该系统对均压电路、触发电路的性能要求较高,对元器件参数的一致性要求比较高。可实现输出电压连续可调,能完全免除对电网和电动机及机械设备的冲击。

综上所述,晶闸管具有体积小、实现软启动停容易能量损耗小、启动方式多样化等特点。同时,多个晶闸管串联,需要解决同步触发、均压、均流等技术关键。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
5、

煤矿电机拖动系统变频节能系统研究

随着电力电子技术、计算机技术、电力通信技术等的进一步发展,变频调速节能技术得到迅速发展且在工程实际应用中发挥了良好的应用效果。高性能的变频调速节能装置设备已被大量地引入到煤矿、钢厂、电厂等工业领域。通过大量研究和实践工作可知,交流电机采用变频调速技术升级改造后其通常可以获得30%~65%的节电效益。在煤矿开采过程中,随着井下开采和掘进的不断延伸,矿井巷道也变得越来越长,为了满足井下通风需求,需要增加通风风机的功率容量,这样大功率的电机直接起动对煤矿配电网冲击非常大,加上井下作业面需求风量波动较大,采用常规继电器直接控制方式会导致大量电能资源浪费。目前,大功率交流电机采用变频调速技术进行升级改造,已成为当代电机节能调速控制的潮流,其节能节电效果十分明显,加上科学技术的进一步发展,大功率、高电压变频器的制造成本也在明显降低,变频器起动性能和调速平稳性能得到大大提高,减少了电机起动对煤矿配电网的冲击。因此,结合煤矿井下通风系统的实际情况,采取变频调速技术对原电机控制系统进行技术升级改造,就显得非常有意义。

1电机变频调速控制原理

煤矿井下通信系统中风机电机拖动系统,由于受当时建设技术水平和综合投资资金的制约,存在电源浪费严重等问题。采取基于PLC与变频器的变频调速技术升级改造,可以达到节能降耗的目的。电机拖动系统的节能通常有两种方法,一种是直接采用节能电机,如永磁同步电机;另一种是采用变频调速等控制系统来动态调节电机输入电源频率,达到风机拖动系统输入与输出间的实时动态平衡,进而达到电机调节运行节能降耗的目的。基于PLC与变频器的电机变频调速控制系统具有体积小、重量轻、起动转矩大、控制精度高、功能强、可靠性高、操作维护简单便捷、兼容性强等优点,要明显优于以往常规电机调控模式,使用它除了具备调速稳定可靠的优点外,还可以节约大量电能资源。

风机电机的输出转速(转矩)同电机输入电源频率、转差率以及电机磁极对数三个因素有直接关系。电机输出转速可以表示为:

(1)

式(1)中:为电机的磁极对数;为电机运行实时电源频率;为滑差。

从式(1)可知,对于交流电机拖动系统而言,要实现电机拖动系统在实际调节运行过程中,具有较高调控稳定精确性和节能经济性,可以采取三种方法,即改变电机的磁极对数p、通过内部转子串联电阻等改变电机的滑差率s、改变电机实时电源频率f。改变电机磁极对数p和滑差率s,均需要改变电机内部结构,这在很大程度上受到电机制造工艺、生产技术等因素的制约。而调节电机输入电源的频率f,不仅不需要改变电机的内部结构,而且只需要外加变频器作为电机输入电源的调控单元,就能完成对电机控制系统的动态调节。同时采用变频调速后,能够经过变频器和PLC的动态调控,使整个电机拖动系统长期处于最优工况,达到节能降耗的目的。从技术性、调节运行节能经济性等方面来看,变频调速控制较其他节能方案在可行性、可靠性、精确性等方面更加优越,是电机节能降耗工程中常采用的技术措施。

2电机拖动系统变频调速节能改造的技术要点和功能效果

煤矿通风系统中的风机电机拖动系统采用基于PLC与变频器的变频调速技术升级改造方案中,其节能改造实现的基本控制要求包括以下两个方面:

(1)节能控制系统应具备抑制电磁干扰的相应有效技术措施,能够防止非正弦波干扰风机电机拖动控制系统中的电脑主机、计时器、传感器等精密仪器设备的高效稳定工作,也就是采用变频调速控制系统进行技术升级改造过程中,不能改变风机电机控制系统的其他功能单元和元器件设备的正常稳定运行性能参数。

(2)在变频调速节能运行过程中,当风量检测系统出现故障时,变频调速控制系统将以电机拖动系统上限频率进行恒功率运行,以确保系统最大的风量。当变频调速控制系统出现故障时,能够发出声响及指示灯指示,提醒运行管理人员进行相关设备性能检查,同时起动原控制系统(如软起动、继电器直接起动等)。

风机电机拖动系统采用变频调速控制技术升级改造后,能够取得较好的节能经济效益、延长使用寿命等功能效果,具体表现为:

(1)速度调节范围较宽。基于PLC与变频器的变频调速控制系统,其控制可靠性和精确度较高,且其速度控制范围较宽,理论上能够实现在1%~100%范围内的连续动态平滑节能调节控制。

(2)实时调节误差较小,精度较高。可以达到±0.5%的误差范围。

(3)电能利用效率较高。电机转换效率可以达到96%以上,同时电机拖动系统功率因素可以达到95%,节省了大量无功功率,降低了配电网变压器的无功调节负担,提高了供电系统的供电可靠性。

(4)具备软起动功能。能够有效抑制电机起动冲击电流,确保电机起动具有较高安全可靠性,可以延长电机拖动系统的综合使用寿命。

(5)节能节电效果十分明显。采取变频调速控制系统进行技术升级改造后,比常规继电器直接起动控制系统,其节能节电效率通常可以达到30%以上。

3电机拖动系统变频调速节能改造效益分析

3.1电机变频调速节能改造方案

一大型煤矿井下通风系统中共采用3台通风机(按照两用一备控制模式设计),其进口温度为22℃,进口压力为99.12kPa,升压为68kPa,轴功率为207kW,配置异步电动机型号为Y355M1-2-220kW/380VF级IP55,功率为220kW。为了提高煤矿井下通风系统运行的可靠性、经济性、节能性,结合煤矿井下通风系统的实际运行工况,按照“最小改动、最大可靠性、最优经济性”等改造原则,对煤矿井下通风电机拖动系统进行技术升级改造。决定采用基于PLC与变频器的变频调速控制对煤矿井下通风电机拖动系统进行技术升级改造,为了分析改造经济效益,决定1#风机采用变频调速运行方式,2#风机采取工频运行方式。

3.2电机拖动系统变频调速升级改造节能效益分析

在各项运行技术指标和环境均相同的情况下,1#风机与2#风机相比,1#风机其调节运行工况性能要更加平滑稳定,平均运行电流降低到326A,比工频运行额定电流的408A要直接降低82A,理论节电效率为:,实际节电效率为43%,节能节电效果十分明显。

4结语

根据通风空调系统电机变频调速节能控制技术原理,对煤矿井下通风电机拖动控制系统进行技术升级改造,使井下通风系统运行更加安全可靠和节能经济,同时煤矿井下通风系统电机拖动设备的综合使用寿命也得到延长。结合一大型煤矿井下通风系统具体节能改造工程的节电经济效益分析计算,可以得出煤矿井下通风系统变频调速升级改造的节能优越性。对煤矿井下通风系统风机电机拖动系统的变频调速节能升级改造,这个通风系统运行的稳定性和可靠性得到了进一步提高,井下通风温湿度指标也能满足实际煤炭开采需求。在现代变频调速控制技术的进一步完善和成熟下,变频调速节能改造电机拖动系统将成为煤矿井下通风系统节能升级改造的重要方法之一。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
6、

探析电力拖动控制线路在安装中的运用

电力拖动是线路控制的主要方式,而在具有的实施中,要遵循一定的布线原则。随着科技的进步,电力拖动线路的应用领域不断扩展,对人们的生产和生活带来积极的效益。为了了解电力拖动控制在线路安装中运用,文章分析了其布线原则,阐述了其在电力系统安装中的过程,并且针对其存在的问题提出了电力拖动控制线路安装的创新。

电力拖动是线路控制的主要方式,基于此的线路拖动需在必要的原则下进行。为了促进电力拖动控制线路在安装中积极作用的发挥,文章举例说明了其应用过程和发展前景。

一、电力拖动控制系统介绍

(一)继电接触式断续控制

继电接触式断续控制操作方法简单,在电力拖动控制线路中得到广泛的应用。其以三相异步电力拖动系统作为主要系统,对于继电接触式断续控制系统的了解主要包括以下几个方面:了解线路图纸,进行线路安装规划。对于无法直观理解的元件,需要相关工作人员根据经验对其进行处理和分析。

(二)可编程无触点断续控制

可编程无触点断续控制应用也较为广泛,但其运行较为复杂,费用较高。其主主要原理为计算机的编程控制。但其能够有效的控制系统死接线的问题,对于线路控制智能化的实现具有推进作用。

二、电力拖动系统及其控制线路布线原则

设备性能的优化促进了社会劳动生产率的提高。随着科技的进步,我国的电力拖动技术广泛应用于农业、工业等领域。电力拖动控制系统是目前较为先进且应用广泛的系统,能够满足人们对电力的需求。在电力拖动控制线路的安装中,其布线要遵循一定的原则。首先是敷线操作,在安装前认真检查安全器件,确保其性能良好。在敷线过程中,要注意以下问题:防止两个端子之间出现接头,一旦出现则采取加装接线盒的方式,确保系统的稳定运行。同时,接线盒的安装有助于线路的维修和保养。并且,在安装接线盒时要预留适当长度的导线,为线路的安装和控制打好基础。然后进行线路的接线,接线过程要求线路连接完好。尽量使用单独的导线连接同一个元件,这样可以保证线路的稳定性。要求将其与器件的横截面积相对应,按照上小下大原则进行器件的排列。根据具体的施工状况和线路用途进行调整。另外,在导线长度的选择上,不宜过长或者过短,要满足线路额定电流的要求,同时避免浪费,将主、控电路进行正确的甄别和分类,避免线路重叠,在安装前要认真检查线路的外皮,确保其绝缘性良好,以免造成安全事故。

三、电力拖动控制线路在安装中的运用

(一)电力拖动控制线路的安装

目前,在很多生产设备中存在电力拖动线路,电力拖动线路在生产和生活中具有积极的作用。以电梯设计为例,它是应用位置控制与减速控而使电梯能够到位自停或迅速减速。在现代电梯设计中,线路的设计要保证其停在准确的位置。随着科技的进步,电力拖动控制线路应用于机械行业、建筑行业以及矿产业等行业。目前,其技术正在进一步发展,其积极作用逐渐体现出来。

(二)电力拖动控制线路安装过程中的问题

由于电力拖动控制线路安装较为复杂,且受限于现代电力拖动技术,常使得企业安装人员在安装过程中出现安装错误。如安装线路与图纸不符而到设备无法通电正常运行。一些员工无法正确的区分元器件的两个接线柱等问题,这一系列的问题都要求电力拖动安装过程要注重员工技术的培养,加强其对线路拖动的了解。另外,在电力拖动控制线路安装过程中,线路质量容易被忽略。很多企业直接进行安装而忽略了对线路绝缘性能的检验。

(三)电力拖动控制线路在实践中的创新问题

在探讨电力拖动线路安装过程中还存在缺乏创新的问题。基于电力拖动控制线路安装的复杂性,企业应对线路安装进行检查,对出现问题的线路及时进行改进。另外,还应不断地实现电力拖动线路的创新,改善传统的线路拖动中存在的问题。由于传统的线路拖动易出现粘连问题,造成线路绝缘性能下降,因此要实现其创新。其主要原因在于先给控制电源的电闸通电,导致线路在拖动过程中产生较大的电弧。因此我们对其采取创新措施。增设线路中的控制点,同时确保控制点之间不造成相互影响,设置多个信号灯来提示不同的线路损毁问题和安全隐患,确保启动点运行一致。电力拖动近年来取得了良好的效果,但在技术上和具体实施中都存在一定的问题需要解决。其中包括资源浪费问题,维修问题和线路的绝缘性能以及安装顺序问题等。总之,针对电力拖动控制线路在实践中存在的诸多问题,我们应对其进行必要的创新,从而使其在线路控制上起到积极作用。

四、总结

电力拖动技术对电力线路的安装具有积极的作用,但其实施过程较为复杂。电力拖动可以应用于建筑、机械、电力等多个领域,其技术随着企业改革而不断改进。当然,目前电力拖动技术还存在一定的问题,包括企业员工对电力拖动不了解等。基于此,电力拖动控制线路在安装中应进行不断改进和更新。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
7、

略论电力拖动控制线路实训故障排除教学

电力拖动控制线路故障排除基础知识与实践技能操作是学习生产机械电气控制线路的基础。它涉及到的内容与学科较多,且实践性较强,无论是多么复杂的线路,都是由最基本的控制线路组合而成,学生只要掌握常见的基本控制路线,就能熟练的解决电力拖动控制线路所遇到的故障问题。

1电力拖动系统的概念

拖动是指用各种原动机带动生产或工作机械(负载)产生运动以完成一定的任务。电力拖动是指各种电动机作为原动机的拖动方式。

1.1电力拖动系统的构成

电力拖动系统有四个部分组成:电动机、电机控制装置、机械传动机构、工作机械等。

1.2电力拖动控制系统结构

电力拖动控制系统是由电机及负载、电力电子变化器、控制器、检测、反馈装置等结构组成。

1.3电力拖动自动控制的目标及本质

电力拖动自动控制系统(调速系统)控制的目标是速度,电动机速控制的本质是对其输出转矩的控制。

2分析电路的原理结构

想要让学生熟练地运用电路的原理结构去分析电路故障的原因,就必须让学生先学会判断电路故障的方法,把电气原理图与电路的工作原理琢磨透,同时,在给学生进行理论知识指导的时候鼓励学生踊跃提出问题并给出解答,只有打下扎实的理论基础才能让学生更好的掌握电路故障实训排除故障的技能。

2.1电路故障的分析方法

首先要求学生依据电路的工作原理去查看电路出现的故障现象,确定故障点的大概方位;然后再根据电路工作的原理去分析故障点所出现故障的原因有几个,是否是多个故障点所造成的电路故障;最后要求学生确定故障点及故障原因后进行排除故障,完成后让学生对这次故障点排除做好总结,从中找出故障点的原因。

2.2故障排除与技能训练

2.2.1电力拖动控制线路故障类型及现象

电力拖动控制线路的故障分为软故障、硬故障、间接性故障等三种类型。软故障是指除了电源、制动器、以及电动机出现问题以外,大部分故障原因出在了机械动作失灵、触头与压接线出现接触不良及脱落、电器元件没有适当调整等现象。硬故障是指导线、电动机以及电器元件出现明显的冒烟、发热发烫、有焦臭气味甚至局部冒火花等现象,造成这种故障的原因大部分是短路、接地、过载等击穿绝缘层烧坏或者导线所致。间接性故障是指局部元件老化或接触不良及脱落等现象造成的故障。

2.2.2故障技能训练

在做故障技能训练之前,老师必须给学生做好安全教育训话,首先指导学生在做故障技能训练时以自身安全为主,其次是指导学生熟练的掌握电力拖动控制线路的工作原理,然后给学生进行电力拖动控制线路排除故障示范,最后指导学生在老师的安排下进行电力拖动控制线路的故障技能训练,学生做完之后并对此次的电力拖动控制线路的故障技能训练进行分析总结。

2.2.3分析故障点范围的方法

分析故障点范围的方法是排除法,排除法是指在做电力拖动控制线路故障的技能训练时,要对故障原因进行排除分析,首先分析故障出现的方位,是电器的原因还是机械的原因,然后具体问题具体分析,分别查看故障点其中是电源出现问题还是线路出现问题,如果是线路出现问题,准确分析是主电还是控制线路出现问题,又是控制线路的哪个环节或者元件出现问题,最后对故障点进行修复。

2.2.4查找故障点的方法

查找故障点的方法有电压测量法、电阻测量法、短接法等三种。老师在指导学生进行电力拖动控制线路故障技能训练时一定要提高学生的学习兴趣。大部分学生在进行电力拖动控制线路故障训练时,没有掌握正确的查找故障点方法,盲目地使用各种仪器或者测量仪等没有章法的去检查故障,这样浪费了大量的时间,长此以往会使学生失去学习电力拖动控制线路的兴趣。由此可知,兴趣才是最好的老师,首先提高学生对学习电力拖动控制线路故障训练的实验兴趣,引导学生自主思考,根据所观察的熔断器内熔丝是否熔断、各连接螺钉是否松动、安装的线路与原理图是否一致、接触器铜片有没有脱落、线路有无短线等。

在指导学生进行电力拖动控制线路寻找故障点实验过程中,做到让每一个学生都参与实验,让每一个学生都动手实践,根据学生的实验过程了解学生对电力拖动控制线路故障排除技能训练的掌握程度以及遇到的问题进行详细解答,并且让学生再做一次故障排除技能训练,运用设置多种故障点的方法,人为的在线路上设置元件出现故障、线路出现故障,让学生对电力拖动控制线路故障排除技能训练做到熟能生巧的程度,为以后学习复杂的电力拖动控制线路故障排除技能奠定扎实的基础。

2.2.5对故障点出现的问题进行检测

在对学生进行电力拖动控制线路教学之前,首先要培养学生良好的思维习惯,这对学习电力拖动控制线路有很大的帮助。因为良好的思维方式有助于学生找到正确的学习方法,对学习电力拖动控制线路的故障排除技能训练有着事半功倍的效果。

首先,培养学生在学习电力拖动控制线路故障排除技能训练时要有目的的分析故障出现的原因,其次根据原因分析是电器元件还是电路出现故障,再次根据具体问题具体分析,然后判断故障点的大概范围,最后对故障点进行修复解决。这样环环相扣的思维方式,不但可以节约学生进行电力拖动控制线路故障排除训练技能的时间,还能进一步提高学生对电力拖动控制线路故障排除技能训练的兴趣,使学生对以后学习复杂的电力拖动控制线路故障排除技能训练时有目的的对故障点出现的问题进行测量。

在做电力拖动控制线路故障排除训练技能时,要对故障点出现的问题进行有序的检测,首先要检测机械的电源是否出现故障,其次检测电力拖动控制线路是否出现故障,再次检测元器设备是否出现故障,然后确定故障点的大概位置,最后依据电力拖动控制线路的工作原理与设备的动作顺序缩小故障点的范围找出故障点,分析故障出现的原因并正确处理好故障点所出现的问题。

2.2.6分析故障点出现的原因并修复电路

一旦确定了故障点的位置,就要对故障原因进行分析。分析其原因是否因使用时间过长导致电源开关已失灵;机械动作是否失灵;触头与压接线出现接触不良及脱落;电器元件是否适当调整;导线、电动机以及电器元件是否出现明显的冒烟与发热发烫;有焦臭气味甚至局部冒火花;局部元件老化或接触不良及脱落等。找出电路的各种故障原因后,对原因进行具体问题具体分析,然后对电路进行有序的修复,完成修复工作后对电力拖动控制线路进行运行操作,在操作的过程中一定要按照操作要求的顺序进行(这样可以避免再次出现故障),直到电力拖动控制线路能够正常运行为止,才算修复成功。

最后,要求学生对这次的学习《电力拖动控制线路实训故障排除》的教学实验进行总结,总结的内容包括对电力拖动系统概念的了解、电力拖动控制线路实训故障排除的技能训练、分析故障点出现的现象及原因、故障点排除的方法、故障点的修复工作等。

3结语

电力拖动控制线路实训故障排除是一种使学生把理论知识与技能训练相结合的教学方法,通过实际操作技能训练让学生熟练的掌握电力拖动控制系统故障排除的方法,达到提高学生的专业知识与专业技能训练的目的。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
8、

关于同步电动机的电力拖动问题分析

在同步电动机使用过程中,其稳定性的控制是关键。而电力拖动是影响其稳定性的主要因素,如何实现同步电动机的转速与同步转速相同是本文讨论的重点。

一、同步电动机的起动

正常运行状态下的同步电动机,其转子转速保持不变,确保定子与转子磁场因电磁作用所产生的旋转磁场处于相对静止状态,从而使其产生稳定的电磁转矩。因此同步电动机可以带动负载在同步速度下稳定运行。但由于能够处于稳定状态,直接起动将影响其机械性能。由于其使用电源为50Hz交流电源,加大了其起动难度。同时,三相定子绕组连接三相对称电源后,如定子磁场N极与转子磁极的S极接触,虽受到异性磁极的吸引,但由于转子自身的惯性较大,并不能使静止的转子发生转动。如此状态循环下,转子无法运转而只能在原处摆动。这使得因此同步电动机的起动问题成为难题,要确保其起动过程中稳定性不受到影响,可采取以下措施:

(一)辅助电动机起动

为了实现对同步电动机的牵引,可选一台异步电动机,并要求其极数与同步电动机一致。若同步电动机在起动时转子未加入励磁,需要将转子借助辅助电动机牵引以接近或达到同步转速,完成之后将直流励磁电流通入到同步电动机的转子励磁绕组中,将同步电动机利用整步转矩将接入电网。实际上,在完成定子的同步运行后,辅助电动机已失效。要降低不必要的电能损耗,应停止辅助电动机的运转。辅助电动机起动法主要应用于同步调相机起动和空载起动,但其需要较多的设备,且操作相对较为复杂。

(二)异步起动

异步起动主要靠安装在同步电动机上的异步电动机绕组实现。其操作原理为:将定子通电,靠起动绕组中所产生的异步电磁转矩实现电动机起动。在其转速接近同步转速时,通入励磁电流,通过同步电磁转矩实现电动机的同步运转。异步起动主要靠安装在电动机上的绕组实现,所需设备较少,操作方便。需要注意的是,要避免异步起动时励磁绕组的开路状态。这是由于开路状态下,过多的励磁绕组匝数将造成定子的感应电压升高,从而导致其绝缘性能下降甚至消失,容易造成安全事故,这是异步起动最大的缺点。同时,这种起动方式过程不能使磁绕组直接短路。否则将造成励磁绕组的单相电流过大,并且在旋转气隙磁场的共同作用下,附加转矩增大。根据异步起动的转矩特点,在其起动时,可选择实阻值约为励磁绕组10倍的起动电阻,并将其与转子励磁绕组连接。这样可以减小励磁绕组的感应电流,降低单轴转矩对电动机起动的影响。

二、同步电动机的变频调速

同步电动机的转速与供电电源频率之间始终保持同步并处于稳定运行状态,也就是说,电动机的转速只与电源频率有关,与负载之间无必要联系。也就是说,要实现其转速的改变,变频调速是唯一的方法。目前,变频调速系统主要为自控式调控系统和他控式调试系统。

(一)自控式同步电动机变频调速系统

自控式同步电动机的变频调速的优势在于消除了其转子振荡和失步而出现的安全问题,自控式同步电动机的变频调速系统由安装在电动机轴端的检测器为主,该检测器的主要作用就是通过信号的发出电力电子器件的频率和导通顺序,实现定子转速与转子转速保持同步,消除了负载对设备运转的冲击。目前,该变频装置可采用交-交型或交-直-交型。自控式同步电动机变频调速系统不再使用旋转接触式换向器,而是采用了电力电子逆变器与转子位置检测器。自控式变频同步电动机的变频装置具有差异,这要影响无换向器电动机的电流使用交流还是直流。

(二)他控式同步电动机变频调速

交-直-交变频器是他控式同步电动机变频调速系统的主要应用装置,其变频系统的结构与自控式变频系统相比较为简单,通常只有一台中变频器供电,因此操作较为简单,但相对来说,变频效率不高。但能够作为变频起动装置,确保同步电动机的软起动,或将其应用于多台同步电动机的同时调速。但他控式同步电动机变频调速性能较差,结构简单,存在转子振荡和失步等安全问题,因此应用并不多。

三、总结

同步电动机只有在转速等于同步速度时才能产生恒定不变的同步电磁转矩。该电动机的结构较为简单,主要问题在于其起动。如何保持转子与定子速度的一致是保证其稳定运行的关键。目前,同步电动机所用电源多为50Hz的交流电源,这使得其从静止状态到运转状态的转变较为困难。随着电力系统的快速发展,运行在系统上的主要负载为异步电动机和变压器。这使电网必须要担负电感性的无功功率,从而造成线路损耗,因此同步电动机的起动是其运行中最重要的问题。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
9、

磨煤机主电机的简要论述

一、电机的基础知识

电机是机-电能量转换的设备,电机种类很多,功能各一。电机的设计、试验均要按照相关标准要求执行,出口电机通常按国际IEC标准要求执行,不执行电机使用国国标要求。特殊要求经双方协商鉴定协议后执行。

1.电机分类

2.异步电机通用标准

基本标准所列的是有关电机性能、冷却方式、防护等级、功率等级、安装尺寸、振动、噪声、电压等级等交流电机均需满足要求的标准,其中重要标准有电机旋转电机基本要求、振动、噪声、试验方法等。

二、电机基本结构

1、不论使用在何种场合或何种冷却方式的的异步电动机,电机主要零部件均包括有机座、定子、转子、轴承装置、出线装置等;对自然通风冷却方式的异步电动机包括通风罩;对空--水冷却方式的异步电动机包括空--水冷却器;对空--空冷却方式的异步电动机包括空--空冷却器及根据用户要求设置的其他辅助设备或设施。

2、电机结构简图

三、磨煤机电机种类

4)电机设计原则

电机设计除按相关标准外,电机设计需根据负载类型,如驱动风机、磨机、水泵等及使用环境(户外、户内)、双方协议要求设计制造。

2、YTM、YHP、YMPS磨机电机设计特点

磨机电机设计特点是根据磨机特点,运行工况要求而特殊设计的派生系列产品。为满足磨煤机的高起动转矩性能的要求,电动机采用单鼠笼或双鼠笼转子结构,并增加电机有效材料的用量,加大定子绕组和转子导条及端环的热容量,提高堵转转矩和最大转矩,限制了堵转电流,提高电机的安全堵转时间设计主要考虑,相对风机水泵类负载电动机,成本约增加30%。设计考虑有:

2.1轴承结构设计:

滚动轴承结构能满足要求的,尽量使用滚动轴承,并采用三轴承结构(柱轴承+球轴承、柱轴承),优点是:

a)能承受冲击载荷,频繁起动;

b)满足系统盘车要求。

需选用滑动轴承时:尽量选用油站,因电机容量大,冲击载荷波动特点易引起轴瓦缺油而损坏轴承,同时滑动轴承在系统低速盘车转速下无法建立油膜而损坏。

2.2转子结构设计:

转子结构设计是磨机设计的关键,理由是转子结构设计的适合性,可确保满足磨机起动力矩要求、起动热容量要求,及满足起动振动冲击时,铜条不断条或不烧毁铝条。常见转子槽形有:梨形、梯形、刀形、双笼、深槽矩形。

3、风扇磨机电机设计特点:

风扇磨机最大的特点是风扇磨机转动惯量非常大,是目前电机驱动负载中最大的,风扇磨机系统未配置液偶或变频起动等对电机有保护措施的结构。

3.1电机设计特点

a)通常结构设计电机能满足风扇磨机的要求,

b)根据风扇磨机转动惯量核算电机起动温升、起动时间,必确保起动时定子线圈、转子导条、端环起动温升满足要求。

c)起动力矩倍数满足系统负载转矩要求即可。

3.2起动要求

每一次起动,起动过程的损耗均会使定子线圈、转子导条温度增加。电机多次热态起动更会使温升叠加而发生安全事故,因此要严格控制起动次数。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
友情链接友情链接