工业伺服节能改造,关于工业节电器违法吗信息聚合页,专注于工业节电器违法吗:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
您的位置:首页 > 工业节电器违法吗
节能改造关注问答
1、

高压电机启动方式

电机容量小于电源容量且1000KW以下的可直接启动,这时的冲击电流是额定值的3-6倍(当然同步电机的直接启动指的是同低压的一样,先异后同等方法)。为了防止冲击电流过大,对于大电机必须考虑减少启动电流的启动方式:有串电抗启动,变频启动,液力偶合器启动等多种方式。有复杂有简单。

高压电机要实现调速,主要采用三种方式:

(1)液力耦合器方式。即在电机和负载之间串入一个液力耦合装置,通过液面的高低调节电机和负载之间耦合力的大小,实现负载的速度调节;

(2)串级调速。串级调速必须采用绕线式异步电动机,将转子绕组的一部分能量通过整流、逆变再送回到电网,这样相当于调节了转子的内阻,从而改变了电动机的滑差;由于转子的电压和电网的电压一般不相等,所以向电网逆变需要一台变压器,为了节省这台变压器,现在国内市场应用中普遍采用内馈电机的形式,即在定子上再做一个三相的辅助绕组,专门接受转子的反馈能量,辅助绕组也参与做功,这样主绕组从电网吸收的能量就会减少,达到调速节能的目的。

(3)高低方式。由于当时高压变频技术没有解决,就采用一台变压器,先把电网电压降低,然后采用一台低压的变频器实现变频;对于电机,则有两种办法,一种办法是采用低压电机;另一种办法,则是继续采用原来的高压电机,需要在变频器和电机之间增加一台升压变压器。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

电机容量的选择

1、连续工作制电动机容量的选择

1.带恒定负载时电动机容量的选择

对于负载功率恒定不变(如通分机、泵、重型机床、立车、齿轮铣床的主转动等)的生产机械、拖动这类机械的电动机在连续运行时的负载图及温升曲线如图7.2所示。这类工作机械选择电动机时,只需按设计手册中的计算公式算出负载负载所需功率,再选一台额定功率为的电动机即可。

因为连续工作制电动机(这类电动机有些铭牌上没有特别标明工作制)的启动转矩和最大转矩均大于额定转矩,故一般不必校验启动能力和过载能力。仅在重载启动时,才校验启动能力。

2.带变动负载时电动机容量的选择

在多生产机械中,电动机所带的负载大小是变动的,例如,小型车床、自动车床的主轴电动机一直在转动,但因加工工序多,每个工序的加工时间较短,加工结束后要退刀,更换工件后又进刀加工,加工时电动机带负载运行,而更换工件时电动机处于空载运行。其他如皮带运输机、轧钢机等也属于此类负载。有的负载是连续的,但其大小是变动的,如图7.3所示。在这种情况下,如果按生产机械的最大负载来选择电动机的容量,则电动机不能充分利用,如果按最小负载来选择,则容量又不够。为了解决该问题,一般采用所谓“等值法”来计算电动机的功率,即把实际的变化负载化成一等效的恒定负载,而两者的温升相同,这样就可根据得到的等效恒定负载来确定电动机的功率。负载的大小可用电流、转矩或功率来代表。

电动机的温升取决于它发出的热量,而电动机发出的热量是由损耗产生的,损耗有两部分,一是不随负载变化的不变损耗(包括铁损与机械损耗),一是与负载电流的平方成正比的可变损耗(铜损)。例如,图7.3所示的负载,对应于工作时间、……的负载电流为、……,则电动机在各种不同负载时的总损耗为


然后选择电动机的额定转矩,使即可。这就是等效转矩法,对生产机械来说,作出机械转矩负载图是不难的,因而等效转矩法应用广泛。

当电动机具有较硬的机械特性,转速在整个工作过程中变化很小时,则可近似地认为功率,于是式(7.3)可化成等效功率来计算,即


因用功率表示的负载图更易于作出,故等效功率法应用更广。

然后选择电动机的额定功率,使即可,这就是等效功率法。不管采用哪一种等效法选择电动机的容量,都只考虑了发热方面的问题。因此,在按“等值法”初选出电动机后,还必须校验其过载能力和启动转矩。如不满足要求,则应适当加大电动机容量或重选启动转矩较大的电动机。

2、短时工作制电动机容量的选择

有些生产机械工作时间较短,而停车时间却很长,例如,闸门开闭机、升降机、刀架的快移、立车与龙门刨床上的夹紧装置等,都属于短时工作制的机械。拖动这类机械的电动机之工作特点是:工作时温升达不到稳定值,而停车时足可完全冷却到周围环境温度,如图7.5所示。由于发热情况与长期连续工作方式的电动机不同,所以,电动机的选择也不一样,既可选用短时工作制的电动机,也可选择连续工作制的普通电动机。

1.选用短时工作制的电动机,规定的标准短时运行时间是10min、30min、60min、及90min四种。这类电动机铭牌上所标的额定功率是和一定的标准持续运行时间相对应的。例如为20KW时,只能连续运行30min,否则将超过允许的温升。所以,要按实际工作时间选择与上述标准持续时间相接近的电动机。如果实际工作时间与不同时,就应先将下的功率(生产机械短时工作的实际功率)换算成下的功率,这可根据等效功率法加以换算,即

然后选择短时工作制电动机,使其,再进行过载能力与启动能力的校验。

2.选用连续工作制的普通电动机

普通电动机的额定功率是按长期运行而设计的,再连续工作时,它的温升可以达到稳定值(即电动机的容许温升,位能充分利用。为了充分利用电动机在发热上的潜在能力,在短时工作状态下,可以使它过载运行,而其过载倍数与有关(如图所示)故选




--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

浅析永磁电机的五大节能原理

一异步电机(感应电机)的工作原理是通过定子的旋转磁场在转子中产生感应电流,产生电磁转矩,转子中并不直接产生磁场。因此,转子的转速一定是小于同步速的(没有这个差值,即转差率,就没有转子感应电流),也因此叫做异步电机。而智能工业电机转子本身产生固定方向的磁场(用永磁铁或直流电流),定子旋转磁场“拖着”转子磁场(转子)转动,因此转子的转速一定等于同步速,也因此叫做同步电机。智能工业电机的转速n始终为n=60f/p不变,式中f为设定频率,p为电机极对数。

由于不需要从电网吸收无功电流,转子上既无铜耗又无铁耗,所以同步电机在很宽的负载范围内能保持接近于1的功率因数,机器效率比同容量的异步电动机提高8%左右,力能指标(ηXcosΦ)提高18%左右。

二智能工业电机的功率密度比同容量的异步电动机提高25%左右。同样功率的电动机,智能工业电机要比异步电动机小2个机座号,体积小意味着铁损小,以及机械损耗小。

三智能工业电机比同功率的异步电动机效率高,同时高效区宽,智能工业电机的转速范围在25%-990%额定转速时,效率达到95%-97%,而异步电动机的转速范围在70%-99%额定转速时,效率只有88%,当转速低于70%额定转速时,效率会急剧下降。

四智能工业电机和异步电机在不同转速情况下的转矩比较

五异步电机起动时,电流是额定电流的6-7倍,对电动机寿命不利,为了达到需要的扭矩,甚至还有加大电机型号,而电机运行时处于低负荷工作,效率降低。而智能工业电机启动时,电流是逐渐增加的,不会超过额定电流,扭矩也能达到额定扭矩,没有电流冲击,延长了使用寿命,电机处于合理的负荷工作。节能原理说明六永磁同步电动机转速控制精准。在转速要求高的场合有更大的优势。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


4、

电机节能的方式有哪些?

选择合适的电动机容量

能够满足负载的需要,实现合理匹配。轻载和空载运行都会造成损耗相对高,运行效率低。同一台电动机拖动的负载,运行效率也是在变化的,不是固定不变的,随着负载大小的波动而在变化。

空载运行时间长的电动机安装自控装置为了减少空载时间内的电能损失,对于经常性空载的电动机,应安装空载自控装置。在空载运行一段时间后,能够自动切断电源,退出空载运行,恢复正常运行状态。

低负载率的电动机降压运行

三相异步电动机的铁损和铜损,与输入电压的大小直接有关。一般负载不变的情况下,降低输入电压可使铁损减少,铜损增加。但是这时轻载运行电动机的总损耗中,铁损要比铜损的作用大。因此,适当降低绕组电压运行的办法能使总的损耗下降,具有一定的现实意义。而实现这一措施,可以通过特别的电压自控装置来完成。

采用磁性槽泥实施电动机改造

采用磁性槽泥对电动机进行技术改造,是一种降低槽口磁阻的有效办法。也就是在竹制槽楔上,用磁性槽泥将槽口抹平。这对电动机及其所带负载均有利,系统具有节电作用。

三相异步电动机采用变频调速

三相异步电动机采用变频调速,可在低频起动时大大减少电动机的起动电流,从而实现节电目的。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


5、

管道切割机控制中伺服电机的工作原理

在管道切割机控制系统中,测速辊和管编码器配合使用,将辊轮的角位移转化为电脉冲信号向PLC提供数字量信号,以转速的形式在人机界面中进行显示。

接近开关用于将切割焊枪移架路径限制在允许的范围内,防止切管长度设置错误,焊枪支架移位至丝杠固定端面并与之发生机械碰撞,对机构造成损坏。切割焊枪送气管道内置电磁球阀,由PLC控制接触器的开关状态,实现送气阀的开启与关闭。

焊枪定位杆架上安装有位移传感器,启动丝杠电机,减速器带动丝杠旋转。同时,焊枪定位杆架开始沿平行于管道轴线方向向前(后)移动,当其移动到接近管道一端面时,关闭丝杠电机。调整焊枪枪头至管道端面合适切割点位置,设置传感器初始位移为0,完成切割焊枪的初始化定位工作。

在人机界面中设定好托辊转速以及管道切割长度,经PLC运算指令线性运算后自动转化为伺服电机设定的脉冲数。工作时,伺服电机每接受一个脉冲就会旋转一定角度。与此同时,伺服电机每旋转一个角度,都会发出对应数量的脉冲,和伺服电机接受的脉冲形成闭环控制。从而控制丝杠转动圈数和主动托辊的转速,达到精确控制切割焊枪每次移位距离和所切割管道转速距离。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

电力拖动的虚拟实验技术探讨

随着社会经济的发展,以及人们素质的普遍提高,社会对人们的要求也日益提高。但是由于种种方面的限制,诸如资金的不足,实践活动的缺乏等种种因素,导致实际操作能力与创新能力缺乏。而虚拟实验技术的引用能够大大缓解以上种种因素的限制。具体到电力拖动的虚拟实验技术当中,MATLAB等软件的运用,成为了虚拟实验开发与创新技术培养的全新方式。

1虚拟实验

1.1概述

虚拟实验是在计算机仿真基础上发展起来的一项应用技术。利用计算机的强大功能可虚拟仿真实际的物理系统。众多计算机仿真软件的不断被研发出来,并应用于科研技术设计之中,做出了极为巨大的贡献。PISPCE和MATLAB是当今较为常见的计算机仿真软件,其中MATLAB是虚拟实验的主要开发软件。

1.2优势

在如今大多电机课程实验设备条件下,运用直流电机作为调速对象,仅仅只能开出直流调速系统实验。传统实验虽然拥有众多优势,但是劣势也显而易见,诸如体积巨大,维护繁琐,故障频出,购置需要大量资金等。同时在培养方面也具有巨大局限,如容纳人数的数量方面受到限制,对实验计划和方案制定会提出很高的要求,容错率很低,难以满足人才培养的需求。因此,由于传统实验存在的种种不足,衬托出了虚拟实验多种优势。基于计算机平台上的虚拟实验技术将以上劣势化为优势,对仪器和设备几乎没有需求,同时节省资金和空间。

2具体运用

通过在计算机外接设备上的点击与拖动,将虚拟的各种仪器,按实验的目标与步骤整合成一个完整实验系统的过程,就是虚拟实验。而实验条件的变动,数据的收集汇总,实验结果的分析归纳三个方面全部完成,才意味着整个实验的达成。本文以带有RLC滤波器的交流电机变频调速实验作为实例,实验中包括电机、电力电子、驱动控制三个方面,分析虚拟实验的强大作用,并与传统实验进行比较。

2.1模型的建立

将电压源型逆变器、电动机主回路以及RLC滤波器通过使用MATLAB中PSB库中的元件模型完成建立。一般出现超过功率变换电路的情况,并产生多环节控制,多信号反馈,多非线性环节的特征,说明控制电路规模较大,需要大量运用集成电路。但是,基于对电路的控制,其输入输出特性是我们研究所要了解的主要目标,而其内部的电压与电流则是可有可无的旁枝末节,导致无法使用虚拟实验来进行电路的控制。所以想要实现仿真的方式,可以通过SIMULINK数学函数进行SPWM的调制电路模型的驱动控制。而右图即为所示。

2.2模型参数的构建

通过鼠标对元件图标的点击,在出现的参数设置对话框输入诸如电机的额定电压、功率、频率、转动惯量和定转子数据等各种必要参数。通过滤波效果进行滤波器的RLC参数的设计与运算。在接收变频调速的恒压频比所产生的调制信号之后,通过SPWM调制和驱动模块内部函数的计算,再与设计的三角载波进行比较。

2.3设置仿真模型

设置仿真参数是在仿真模型开始之前必须完成的步骤。包括对开始与终止的时间、步长以及解电路运算方式等仿真类型和相对与绝对的误差等方面进行设置。较快模拟速度的得出需要使用如ode23tb、ode15s这样的刚性系统的参数运算方式。同时,MATLAB软件参数锁设定的虚拟时间与现实的时间并不一致,只是一种对于时间流逝的表现手段。若是缩小步长,则会造成采样点数的增加,使得现实中的执行时间变长。

2.4实验成果观测验证参数设计以及电路结构是否合理,是虚拟实验的主要目标。而上述实验能够经过观测器观测电机速度的变化方式与电压的波形,并依靠给定频率的大小,在进行理论的分析之后,对结果的正确性进行判断。而下面两图中的前者是电机转速的变化图,后者则是在固定的载波频率与固定的调制频率之下的逆变器输出线电压幅度频谱。两张图示将谐波各次的大小、总谐波的有效值和基波有效值三个方面十分明了的展示出来。由于电机的运行效率和机器寿命受到谐波的影响,因此,为了减少电机受高次谐波损害,将RLC滤波器安装于电机与逆变器的中间成为了有效的解决方法。总谐波畸变率在经过RLC参数的设计与电机端电压频谱的观测之后可以保持在10%之下。

2.5实验结果总结

由上面的实验可以得知,作为旋转机械的电机设备,作为是大功率电力开关的逆变器设备等传统实验设备,存在损耗高、构建繁琐、危险性强、价格昂贵等种种弊端。因而既可以对已有系统展开研究又能对处于构想中的设备进行探索,虚拟实验展现了极为显着的优越性。比如上述实验中,在模型库中虽然并不存在满足观测要求的频谱分析仪,但是在运用MATLAB函数展开构建之后,使不可能成为了可能。而虚拟实验的自定义、自主性强的特点,成为了其另一个巨大的优势。同时,虚拟实验具有良好的通用性、与其他系统开展数据交换的便利性以及升级与扩展的成长性,使其在实验数据的分析处理方面显得极为高效迅速。

3结束语

虚拟实验的优越性,通过上文的分析与具体的实验体现的淋漓尽致。但是,十全十美的系统终归是不存在的,虚拟实验尽管在各个方面上都具有显着的优势,然而也无法取代传统实验。建立极为准确的数学模型,始终是虚拟实验仿真技术中的一个难关,各种限制会使之与实际情况产生差异,这也是传统实验存在的必要性体现。因此,只有现实实验与虚拟实验相互配合,才会使电力拖动等电子电路设计技术得以真正的进步与发展。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

单台变频器拖动多台电机的可行性分析及改造策略

石油石化企业的生产强度比较大,一组电机会设置成多台互为备用,以确保电气系统安全可靠运行。但通常情况下整组电机仅设一台变频器用于拖动主电机,主备电机切换后,变频器不再对备用电机实施控制,整组电机便脱离变频调速系统,造成能源呆滞。本文基于经济学角度,通过分析调速控制系统的组成及工作原理,探索变频器“一带多”系统的经济性,可行性。最后阐述改造工程中采用单台变频器拖动多台电机运行时需注意的问题。

1变频器“一带多”的控制系统组成

变频器“一带多”调速控制系统主要包括三部分:信号采集及处理系统,负反馈闭环调速系统和自动检测切换控制系统。

现场环境可采集的信号有很多,诸如压力信号、温度信号、流量信号或液位信号等等。信号采集及处理系统即完成对就地信号的采集与处理,再通过相应的变送器以电流或电压信号传出,必要时为保证到达后续环节的信号质量需要加入信号隔离器。负反馈闭环调速系统是将整形好的信号传送至PID调节器,与设定值比较运算,得出的控制信号对变频器输出进行实时调节,使电机实现变频运行,实现闭环调速控制,进而更好的控制电机执行力。自动检测切换控制系统由可编程序控制器(PLC)及外围输入输出器件组成。系统上电,“手/自动”、“工/变频/检修”等操作命令及变送信号录入系统,核心元件开始依照指令自动扫描,运算,做出判断,遵循程序指标对主备电机实施自动切换控制,同时控制变频器的起动与停止。

2“一带多”变频调速控制系统的工作原理

2.1变频调速控制系统

PLC与变频器联合控制电机的转速及互换。如图1所示,PLC接收变送信号,将反馈得到的速度与给定的速度作比较,再经过高速技术模板运算,得出速度控制量,通过通讯总线将控制量传给变频器,变频器结合自身闭环控制作输出调整,输出信号驱动电机同时反馈PLC,实现调速控制。变频运行状态下主电机需要变频器供电,其他电机做工频运转或备用。如果变频供电电机停机,其相应信号采集处理单元切出系统。此时某台备用电机接到优先级高的变频指令,直接切到变频控制系统,实现变频调速供电,相应信号采集处理单元切入调节回路,参与闭环调速控制。当“工/变频/检修”切换开关处于“工频”或“检修”位置,变频调速控制将不被切入,电机始终处于工频运行或检修状态;当“手/自动”切至手动位置,可将负载与PLC、变频器全部脱开,直接实现工频运作。

2.2PLC工作原理

一旦PLC运行,运行期间重复执行输入采样、用户程序执行、输出刷新这3个阶段,如图2。输入采样阶段,PLC会依次对状态、数据进行扫描,存入相应I/O单元;采样输入结束,进入用户程序执行阶段,然后输出刷新。在这个周期性的运行过程中,数据发生变化,但执行过的单元数据信息不会变化。

2.3PLC与变频器之间通讯

PLC和变频器的通讯方式可以有USS,profibus-dp,MODBUS或PROFINET等多重选择。在此过程中,PLC为“主站”,变频器为“从站”,主站通过串行总线将不断刷新的控制命令传送给从站,从站接收命令后会调整控制输出,并将数据信息以报表形式回传送至主站,如此循环。

3变频器“一带多”的经济性

3.1直接效益

变频调速系统较高的调速精度和较宽的调速范围及“一带多”的控制方式,可以将每组控制回路总投资极大的节约,降低无功能耗的同时缩短资源回收期,以至寿命期内创造零成本经济效益。

3.2间接效益

1)变频调速控制系统可以改善因实际负荷与设计负荷偏离较大而造成的阀体前后压差大、润滑油温轴温高等现象,通过调整转速维持恒压等办法延长轴承、轴瓦的使用寿命。

2)PLC可以对电机实时监控,系统运行状况一步掌握,一旦出现异常现象可极早发现尽早解决,缩短检修时间,亦可避免因事故延迟造成不必要损失。

3)变频调速控制系统可实现主备电机自动切换,备用电机软启动,即便电机控制的流体里杂质较多容易堵塞与泄露,也不会产生大电流冲击电机,增加了电机使用年限。

4)变频器的保护功能齐全,PLC控制快速精确。对于正反转等特殊要求及启停较频繁的情况,两者实施联合保护可以进一步提升系统稳定性和可靠性。

4改造工程

4.1注意事项

变频器的“一拖一”已是成型技术,但在已经投产的装置上改造成“一带多”并非简单易事。首先是电缆走线,控制方案。因为多台电机会有不同的工况,调节参数、范围及控制要求。其次是控制柜安放地点设置。变频器体积及PLC控制柜需要满足电气相关标准。再次是系统总的配电容量。加装了变频器和控制柜,配电系统的供电容量是否可以满足使用要求。第四是电机本身性能是否可以在变频情况下启动,如绝缘等级、变压启动等。

4.2改造策略

本着改造工程量小,运行性能好,节能显着,投资回收期短等原则制定方案。

与电机匹配的变频器功率一定要选定稍高于或等于电机最大使用功率,且选型时等级也要选择高一些的,能满足装置与仪表配套,另外能够实行闭环控制的变频器。同时电机应用变频器时,由于电压变化率dv/dt增高,电机的绕组电压分布变得很不均匀,电机故障率增加,所以从长远经济效益上来讲,在采用变频器“一带多”的同时也要将较低的绝缘等级电机更换为绝缘等级高一些的电机,保证变频器的使用寿命同时保证电机的使用寿命。再者对电机实施必要的保护时,最好不要在变频器输出端应用熔断器,一旦一台电机出现故障,变频器会检测到输出缺相,然后报警停机,这样会将事故进一步扩大。当电机台数过多、线路太长的情况下,可增加输入输出电抗器等措施。另外需做好日常的维护工作。

5总结

采用变频器“一带多”调速控制系统可以将设备的使用寿命延长,将供配电系统的耗能降低,将电力系统安全经济性提升,但需要注意的事项也很多。夯实的理论基础,丰富的现场经验,严谨的工作态度可使变频调速控制系统运行出最完美的经济效益。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

浅析电力拖动系统稳定运行的充要条件

电力的拖动系统可实现机械生产各方面的不同需求,且价格不昂贵、电路设计简单、对自身系统有保护作用,所以当前工业生产对电力拖动应用已非常广泛。本篇文章简单分析了电力拖动系统稳定运行的充要条件,并且对他励直流电动机、异步电动机三种典型负载时系统的稳定性进行判断。

伴随自动化水平提升及科技的发展,在工业生产中对电力拖动系统的控制性、安全性得到了极大重视,再加上电力拖动系统的众多优点,因此电力拖动系统已得到了很广泛的运用。

1电力拖动系统

1.1稳定运行概念

(1)转速改变:假设原本是在工业生产中的运动,以相同的速度进行。当通过一些条件,如负载转矩变化,电源电压变化时,系统切换原来的转速(速度可能是变大或是变小),将原有平稳状态所打破。而在这一种情况下电力拖动系统会生产新的转速并且可以持续一段时间,然后通过新的转速带来新的稳定状态,并产生新的工业生产运行。这表明该系统的运行状态是非常稳定的。

(2)转速变回:可能是因为电源电压及负载转矩变化所带来的副作用消失,新的转速转变回原有的转速,电力拖动系统后又进行正常运行。这点也可说明电力推动系统是很稳定的。

(3)转速超限上升、下降:电源电压及负载转矩变化所带来的副作用消失之后,电力拖动系统的转速却超越正常限量的上升或是下降,则可证明该系统的运行存在不稳定的情况。

1.2工作原理

(1)方向的判断正方向判断:电动机在未有干扰和障碍的环境下,假设可以正常地旋转,即可认为方向为正方向。电磁转矩、转速所形成方向和电动机旋转一致为正向;反方向判断:电磁转矩、转速所形成方向和电动机旋转不一致为反向。

(2)控制情况:一般情况下是用电气设备控制。计算机对电力拖动系统控制运用的方法主要是靠逻辑运算、编写程序进行。

1.3负载机械性、过渡

(1)负载机械性分为:恒转矩、恒功率、风机泵类负载三种。在电动机上运用负载非常广泛的,为了可完善电力拖动系统,对负载了解就非常必要。第一,要知道恒转矩、恒功载、风机泵类负载以及负载方程式;第二,要了解负载曲线图,与所学过的动力学有机结合,对负载分析,分析其特性。

(2)过渡:过渡受外来因素影响(包括外部环境、人为等原因)负载转矩参数会发生变化,电力拖动系统稳定性会被打破。为了确保电力拖动系统稳定,要明确根据电动机机械性产生变化来确定过渡的运行情况。

1.4电动机

(1)电动机种类:a.安装方式:包括卧式、立式两种类型;b.防护方式:包括开放式、防护式、封闭式、防爆式四种类型。

(2)电动机工作:可用连续工作制进行表达,多数情况电动机工作形式与生产机械一致,从三方面选择(连续工作制、周期继续工作制、短期工作制)。

(3)电动机的选择:电动机好坏决定电力拖动系统的成功与否,因此对与电动机的选择要细心,既要考虑电动机自身性能和所工作的环境,还要考虑到价格等客观因素。电动机构造、机械能力、形式要完完全全根据生产要求进行,做到机械类别、负载条件、形式完全是吻合的,也只有满足了这些条件才可保证电动机质量合格及正常运行,才能让电力拖动系统发挥出最佳的效果及作用。在生产运行中会发现电动机容量同样也是重要的环节,在选择电动机时要非常重视。电动机工作时所要求的环境同样重要,环境温度要是渐渐升高并接近或达到规定温度值,就会造成电动机在运行时的机械散热作用及拖动负载作用不能发挥最大效果。

在选择电动机容量的时候需要正确判断额定功率值,但在现实环境的影响下,额定功率地计算并不容易,它要求我们要了解并掌握好电动机相关依据、理论,并且通过合理分析及试验。电动机额定转速是按照经济、技术、使用数据决定,例如:在一个电动机运行过程中制动、启动次数变少就可用技术、经济两方面对电动机进行选择,而一个电动机运行过程中启动、制动次数多时即可用储蓄量来对电动机进行选择。

1.5安全保护

电力拖动系统所无法忽视的问题:安全保护,可分为电器保护、计算机保护两个方面。电器保护是最为简单的也是最为基础的,又可成为短路保护、过流保护、热保护、欠电压保护等等。

(1)短路保护:为防止因电流短路造成一些绝缘电气设备受到机械上故障或损坏状况,或是制止电流所产生电动应力作用下,使电动机绕线、延伸电路绕线以及其他的零件、设备受到损坏和故障。

(2)热保护:防止因为电动机运行时间长、电动机运行超载时间过长所产生出来大量热量的问题,因为这一些热量让绕线温度超过所规定正常温度范围最后破坏电动机运行,或让电动机未能正常运行工作。

(3)过渡保护:防止电动机在运行前出现无法准确的启动,又或者是电动机在运行前负载过大所形成电流量会破坏传动机的零件,让电动机受到故障、损坏状况。

(4)欠电保护:防止电动机电源电压下降过低,让电动机运行过程中,转速也慢慢降低甚至是停止运行造成电气设备的损坏、电路受损、故障的情况。

2电力拖动系统稳定运行的充要条件

众多电力拖动、电机和拖动、电机学资料及参考书中均给出一结论:电力拖动系统稳定的充要条伯为在T=TL外,。可是对于这个条件几乎示有证明或解释。以下内容对此条件作一些简单的说明。

2.1必要性

T=TL此条件表明在同一Ton平面作出电力拖动系统中电动机的机械特点与生产机械负载转矩特点两条曲线一定要有交点,系统可会运行稳定。如果未有交点则系统不可能会稳定。

2.2充分性

微分可近似以微小增量进行表示,即电力拖动系统稳定运行的充分条件可以近似表示:T=TL处,。以下对此条件作出解释性的说明:

(1)当△n>0,即系统为加速,并且满足了的条件。同时在不等式两边乘上大于0的△n,不等号方向保持不变,有△T<△TL,即:T+△T

(2)当△n<0,即系统为减速,并且满足了的条件。同时在不等式两边乘上小于0的△n,不等号方向转变,有,即。也根据电力拖动系统运动方程式可知系统为加速,最后系统达到新平稳以及稳定运行。

2.3系统稳定性的分析

按照上面条件的进行判断他励立直流电动机拖动恒转矩负载情况,知道△n>0,△T<0,满足了的条件,系统那可以稳定的运行。通过此项内容可判定各类电力拖动系统是不是处于稳定的状态中。

3结束语

通过上述的分析,可得出以下结论:正常工作中的他励直流电动机带三种典型的系统都可稳定运行;异步电动机如果在机械特性的工作带三种典型负载中也可运行稳定,可是如果在机械特性的非工作段中只有泵类负载时系统才可稳定;如果是因为电枢反应去磁作用强,导致他励直流电动机机械特性上翘,三种典型负载系统都不能稳定运行。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

探析电力拖动控制线路在安装中的运用

电力拖动是线路控制的主要方式,而在具有的实施中,要遵循一定的布线原则。随着科技的进步,电力拖动线路的应用领域不断扩展,对人们的生产和生活带来积极的效益。为了了解电力拖动控制在线路安装中运用,文章分析了其布线原则,阐述了其在电力系统安装中的过程,并且针对其存在的问题提出了电力拖动控制线路安装的创新。

电力拖动是线路控制的主要方式,基于此的线路拖动需在必要的原则下进行。为了促进电力拖动控制线路在安装中积极作用的发挥,文章举例说明了其应用过程和发展前景。

一、电力拖动控制系统介绍

(一)继电接触式断续控制

继电接触式断续控制操作方法简单,在电力拖动控制线路中得到广泛的应用。其以三相异步电力拖动系统作为主要系统,对于继电接触式断续控制系统的了解主要包括以下几个方面:了解线路图纸,进行线路安装规划。对于无法直观理解的元件,需要相关工作人员根据经验对其进行处理和分析。

(二)可编程无触点断续控制

可编程无触点断续控制应用也较为广泛,但其运行较为复杂,费用较高。其主主要原理为计算机的编程控制。但其能够有效的控制系统死接线的问题,对于线路控制智能化的实现具有推进作用。

二、电力拖动系统及其控制线路布线原则

设备性能的优化促进了社会劳动生产率的提高。随着科技的进步,我国的电力拖动技术广泛应用于农业、工业等领域。电力拖动控制系统是目前较为先进且应用广泛的系统,能够满足人们对电力的需求。在电力拖动控制线路的安装中,其布线要遵循一定的原则。首先是敷线操作,在安装前认真检查安全器件,确保其性能良好。在敷线过程中,要注意以下问题:防止两个端子之间出现接头,一旦出现则采取加装接线盒的方式,确保系统的稳定运行。同时,接线盒的安装有助于线路的维修和保养。并且,在安装接线盒时要预留适当长度的导线,为线路的安装和控制打好基础。然后进行线路的接线,接线过程要求线路连接完好。尽量使用单独的导线连接同一个元件,这样可以保证线路的稳定性。要求将其与器件的横截面积相对应,按照上小下大原则进行器件的排列。根据具体的施工状况和线路用途进行调整。另外,在导线长度的选择上,不宜过长或者过短,要满足线路额定电流的要求,同时避免浪费,将主、控电路进行正确的甄别和分类,避免线路重叠,在安装前要认真检查线路的外皮,确保其绝缘性良好,以免造成安全事故。

三、电力拖动控制线路在安装中的运用

(一)电力拖动控制线路的安装

目前,在很多生产设备中存在电力拖动线路,电力拖动线路在生产和生活中具有积极的作用。以电梯设计为例,它是应用位置控制与减速控而使电梯能够到位自停或迅速减速。在现代电梯设计中,线路的设计要保证其停在准确的位置。随着科技的进步,电力拖动控制线路应用于机械行业、建筑行业以及矿产业等行业。目前,其技术正在进一步发展,其积极作用逐渐体现出来。

(二)电力拖动控制线路安装过程中的问题

由于电力拖动控制线路安装较为复杂,且受限于现代电力拖动技术,常使得企业安装人员在安装过程中出现安装错误。如安装线路与图纸不符而到设备无法通电正常运行。一些员工无法正确的区分元器件的两个接线柱等问题,这一系列的问题都要求电力拖动安装过程要注重员工技术的培养,加强其对线路拖动的了解。另外,在电力拖动控制线路安装过程中,线路质量容易被忽略。很多企业直接进行安装而忽略了对线路绝缘性能的检验。

(三)电力拖动控制线路在实践中的创新问题

在探讨电力拖动线路安装过程中还存在缺乏创新的问题。基于电力拖动控制线路安装的复杂性,企业应对线路安装进行检查,对出现问题的线路及时进行改进。另外,还应不断地实现电力拖动线路的创新,改善传统的线路拖动中存在的问题。由于传统的线路拖动易出现粘连问题,造成线路绝缘性能下降,因此要实现其创新。其主要原因在于先给控制电源的电闸通电,导致线路在拖动过程中产生较大的电弧。因此我们对其采取创新措施。增设线路中的控制点,同时确保控制点之间不造成相互影响,设置多个信号灯来提示不同的线路损毁问题和安全隐患,确保启动点运行一致。电力拖动近年来取得了良好的效果,但在技术上和具体实施中都存在一定的问题需要解决。其中包括资源浪费问题,维修问题和线路的绝缘性能以及安装顺序问题等。总之,针对电力拖动控制线路在实践中存在的诸多问题,我们应对其进行必要的创新,从而使其在线路控制上起到积极作用。

四、总结

电力拖动技术对电力线路的安装具有积极的作用,但其实施过程较为复杂。电力拖动可以应用于建筑、机械、电力等多个领域,其技术随着企业改革而不断改进。当然,目前电力拖动技术还存在一定的问题,包括企业员工对电力拖动不了解等。基于此,电力拖动控制线路在安装中应进行不断改进和更新。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接