工业伺服节能改造,关于苏州 抽油机节能信息聚合页,聚合苏州 抽油机节能:节能产品、节能设备、节能技术、节能方案等信息;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
节能改造关注问答
1、

低速电机的结构

低速电机是由普通电机与特制的变速机构置于一体内来实现低速的。

与普通电机一样,定子通过三相电(或二相电)产生旋转磁场,高速转子在磁场的作用下高速旋转,并带动谐波发生器在柔轮内旋转,柔轮上的齿与刚轮上的齿相啮合。由于谐波发生器的作用,使柔轮在旋转中产生双波变形波。若刚轮齿数为z1,则柔轮齿数为z2=z1-2。当高速转子转速为n1时,则低速转子的转速n2=2*n1/z2。

例如:n1=1400r/min,z2=200,则n2=2*1400/200=14r/min,由此电机便获得低速运转。

普通齿轮副的齿,传动时是一侧相啮合,而双波齿轮则两侧相啮合。显而易见,在其它条件相同的情况下,双波变形齿轮啮合所产生的扭矩是普通齿轮的2倍,因此在负载一定情况下刚轮和柔轮的使用寿命也就更长。

由于低速电机的设计功能为:①输出扭矩大,可以直接驱动机构设备;②转速低,使得运转平稳,噪声小;③体积和重量不到普通同类型电机与减速机之和的一半,使拆装维修更方便;④传动系统可简化,配套设备更安全、美观;⑤效率高达65%左右,功率因素可达0.65-0.85,能源利用率高。所以低速电机已在轻工机械、纺织机械、冶金机械、医疗机械、食品机械、农业机械、环保设备等众多领域中选用,普及推广使用低速电机是各行各业技术进步的必然趋势。




--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


>>详情点击
2、

交流电机和直流电机调速方法

电机有两大类:交流电机、直流电机。交流电机中用得最多的是异步电机(感应电机),转别是鼠笼式异步电机。现德科斯TKS给大家介绍直流电机、交流电机调速方法。

1、直流电机调速方法:

直流电机是指将直流电送到直流电机,把直流电机的电能转换成机械能。这里首先要介绍如何将市电的交流电转换成需要的直流电。六十年代以前采用的是发电机--电机系统(F-D),这种方法只有在电机由专用的发电机供电时才有可能。另一种是可控硅--电机系统(SCR-D)。

直流电机的调速还比较方便,可以通过调节电枢供电电压,电枢中串联电阻,激磁回路串联电阻来实现。

可见直流电机调速有三种方法,而且调节电枢供电电压的方法容易实现平滑、无级、宽范围、低损耗的要求。直流电动机电磁转矩中的两个可控参量和是互相独立的,可以非常方便地分别调节,这种机理使直流电动机具有良好的转矩控制特性,从而有优良的转速调节性能。

尽管直流电机调速就其性能而言,可以相当满意,但因其结构夏杂,惯量大,维护麻烦,不适宜在恶劣环境中运行,不易实现大容量化、高压化、高速化,而且价格昂贵。

2、交流电机调速方法:

交流电机刚好相反。交流电机结构简单、惯量小、维护方便,可在恶劣环境中运行,容易实现大容量化、高压化、高速化,而且价格低廉。

从节能的角度看,交流电机的调速装置可以分为高效调速装置和低效调速装置两大类。高效调速装置的特点是:调速时基本保持额定转差,不增加转差损耗,或可以将转差动率回馈至电网。

低效调速装置的特点是:调速时改变转差,增加转差损耗。

高效调速方法包括:改变极对数调速—鼠笼式电机变频调速—鼠笼式电机串级调速—绕线式电机换向器电机调速—同步电机。

低效调速方法包括:定子调压调速—鼠笼式电机电磁滑差离合器调速—鼠笼式电机转子串电阻调速—绕线式电机。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


>>详情点击
3、

三相异步振动电机的工作原理

三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,喷雾机得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。


--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


>>详情点击
4、

我国多种高效节能电机的发展状况

“十二五”国家战略性新兴产业发展规划已明确将节能环保、新一代信息技术、生物、高端装备制造、新能源、新材料、新能源汽车作为战略性新兴产业。电机系统与战略性新兴产业的发展密切相关,发展高效节能电机及拖动设备是节能环保产业的重要内容之一。伺服电机及其控制系统在数控机床、工业机器人中的应用是高端装备制造产业的基础。大型风电机组、核电电机的研发与制造是新能源产业的重点。高性能电池、驱动电机与控制技术是电动汽车产业发展的关键。

YE4系列超超高效三相异步电动机

2010年4月IEC启动了对IEC60034-30标准的修订工作,决定将IEC60034-30标准分为2个标准,IEC60034-30-1《在线运行交流电机能效分级(IE代码)》和IEC60034-30-2《变速交流电机能效分级(IE代码)》。IEC60034-30-1已经于2014年3月发布,与IEC60034-30相比,主要变化如下:

(1)电机的效率分为IE1、IE2、IE3、IE4、IE5级,IE5效率最高,IE1效率最低;

(2)延伸了功率范围,从0.75~375kW延伸为0.12~1000kW;

(3)扩大了极数范围,从2P、4P、6P扩大到2P~8P;

(4)扩大了电机种类,从单速三相笼型感应电动机扩大到所有在线运行的交流电机;

(5)环境运行温度为-20℃~+60℃。高效率电机的开发仍然是今后电机技术发展的方向之一,为了填补我国GB18613—2012标准中1级能效电机产品的空白,同时也为了配合国家实施能效“领跑者”计划,有必要开展IE4效率电机的研发,以满足今后国内及出口高效电机市场的需要。

总体目标是完成IE4超超高效系列产品设计,并制订产品技术条件。系列产品机座号:H80~H355;功率范围为0.75~355kW;极数为2,4,6,8极;效率平均值为95%,比普通产品高6%。

超高速三相永磁同步电动机

(1)开发超高速三相永磁同步电动机的必要性:填补国内空白,引领电机行业技术进步;促进高端装备制造的国产化,提升我国高端装备制造业水平;促进电机配套材料(硅钢片、电磁线、绝缘)、电力电子(磁悬浮轴承、变频控制器)等行业的发展;大容量、超高速电机的推广应用具有显着的节能减排效益。(2)产品开发阶段目标:先针对离心压缩机在制冷、气体输送等领域的应用,开发配套用超高速三相永磁同步电动机,功率范围10~300kW,转速范围1000~50000r/min。将超高速电机设计、制造与测试技术向机床主轴电机、微燃发电、高速储能等领域扩展。

低速大转矩永磁同步电动机

低速大转矩一般是指转速<500r/min,额定输出转矩>500N˙m的传动系统。这样的传动系统在许多工业传动领域中常见(如球磨机驱动系统属于典型的低速大转矩传动系统),此外还包括油田机械、矿山机械及塑料机械等。

目前,此类设备仍然采用传统的电机加减速机的驱动模式,由于减速机齿轮等机械原因降低了系统的整体传动效率。永磁电机可以实现低速大转矩直驱运行,该特性使得永磁电机在低速大转矩的传动系统中的应用前景非常广阔。低速大转矩永磁电机应用于球磨机,可去除减速机、直驱小齿轮与传动部的大齿轮啮合,实现球磨机可靠运转,系统节能10%以上。

产品开发的阶段目标如下:(1)完成球磨机配套专用电机的开发,电机功率范围为2.2~400kW,转速范围为10~60r/min。(2)开发提升机、皮带机、螺杆泵、抽油机等设备专用的低速大转矩永磁同步电动机。(3)制订球磨机等设备专用的低速大转矩永磁同步电动机产品标准。

高性能永磁伺服电机系统

2005年以来,我国交流伺服电机市场进入高速发展期,年增长率超过25%;2011年市场容量60多亿元,预计2015年可达150亿元。但目前国内伺服电机系统总体技术水平比较落后,日、欧、美伺服产品完全占据国内高端伺服市场,国内伺服产品只能在中低端领域竞争。国内交流伺服电机市场份额的前四名均被外资品牌占据,2011年外资品牌市场份额近80%,国内品牌市场份额只有近20%,特别是大功率交流永磁伺服系统,基本上被国外产品垄断。目前,交流伺服电机系统应用最多的领域是机床,约占25%,纺织机械占20%、包装机械占10%、印刷机械占7%;国家政策支持中高档数控机床产业化发展,高档数控机床已列入国家科技发展重大专项;进行机床用高性能永磁伺服电机系统的技术研究及产业化,带动伺服电机系统朝着高精度、高性能、快响应的方向发展,对提高我国装备制造的整体水平有重要意义。

产品开发阶段目标如下:(1)完成数控机床进给伺服系统的研究与产品开发,电机功率范围为3~15kW,性能水平与国外同类产品相当;完成永磁伺服驱动系统在数控机床上的应用示范。(2)完成永磁伺服驱动系统在纺织机械、包装机械、印刷机械等设备上的应用研究与典型规格产品开发。(3)制订部分设备专用的永磁伺服电机产品标准。

永磁同步磁阻电动机

永磁同步磁阻电动机综合了永磁同步电动机和开关磁阻电动机的特点,具有效率高、功率因数高、功率密度高、调速范围宽等优点。目前在汽车驱动电机上应用较多,需要进一步拓展永磁同步磁阻电动机在工业领域中的应用,开发永磁同步磁阻电动机系列产品。产品开发阶段目标为开发无稀土同步磁阻永磁电机系列产品,效率达到IE3(超高效)能效水平,同时成本与YE3系列三相异步电动机相当,能够替代风机、水泵和压缩机配套的变频调速三相异步电动机。系列产品功率范围为0.55~315kW;机座号为H80~H355;极数为4极;标称转速为3000r/min;调速范围100~5000r/min。

结语

“十二五”国家战略性新兴产业发展规划已明确将节能环保、新一代信息技术、生物、高端装备制造、新能源、新材料、新能源汽车作为战略性新兴产业。电机系统与战略性新兴产业的发展密切相关,发展高效节能电机及拖动设备是节能环保产业的重要内容之一。伺服电机及其控制系统在数控机床、工业机器人中的应用是高端装备制造产业的基础。大型风电机组、核电电机的研发与制造是新能源产业的重点。高性能电池、驱动电机与控制技术是电动汽车产业发展的关键。电机及系统技术的研究和产品开发要与我国战略性新兴产业的发展需求相结合,通过节能环保、高端装备制造、新能源、新能源汽车等重点领域的新产品开发,解决电机在设计、制造、测试、应用等方面的关键技术难题,从而推动电机技术的进步和电机行业的发展。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


>>详情点击
5、

受转速影响导致器具受的总扭矩M不能保持恒定

由于切割元件的存在,方式三与方式一存在相似的问题。在U额定时工具上的额定扭矩M其实有两部分:切割元件的转矩M1和测功机的扭矩M2,仪表显示的即M2。电压变化时M2保持不变,而M1的大小受转速影响导致器具受的总扭矩M不能保持恒定。导致了测试到的效率比实际效率偏低。对于额定扭矩本身就很小的器具,扭矩的微小变化便会引起测量结果的较大差别。所以方式三仍不符合标准要求。正常工作时的运动部件,如砂轮片等具有散热功能,如果试验过程中不安装会导致温升增加,故试验时应安装类似部件,以模拟实际工况。

砂轮片部件被认为是没有旋转不平衡量的,否则一方面加载扭矩不恒定,另一方面由于不平衡引起的转矩变化对温升的影响会抵消甚至远大于其散热对温升的影响。对手持式割草机温升测试结果有影响的,不仅是器具本身,试验过程中的各种不当因素也会造成试验结果的不准确,其中以加载方式的影响尤为明显。

在温升测试中,根据实际情况决定是否安装正常工作需带的旋转部件时,应首先保证部件的不平衡量不会影响到加载扭矩的恒定保持。对手持式割草机温升测试,切割元件和带切割元件同时连测功机的加载方式均不宜采用。仅连测功机的加载方式是符合标准要求的,当对试验结果有疑义时,应以此为准。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
6、

电机扭矩试验台的结构组成

电机微扭矩检测试验台主要分硬件部分和软件部分,硬件部分由气缸、伺服电机、伺服卡、采集卡、工控机等来协调待测EPS电机的运转。软件部分主要是驱动伺服、气缸协同工作,控制设备的运行来完成检测,并从采集卡实时采集角度、扭矩传感器输出电压等数据参数,根据各项试验的数据绘制图表报告,计算产品损耗扭矩、波动扭矩,并标定产品是否合格。

测试台硬件本试验的硬件部分主要是来控制扭力传感器和电机、气缸的协调动作,实时进行数据采集,主要包含如下部分:

(1)气缸:测试过程开始前将伺服与待测EPS电机键槽推送到位。

(2)伺服电机:用来控制待测EPS电机的转动,并反馈角度。

(3)采集卡:用来采集各项实时参数,包括角度、扭矩。选用NIPCI6280采集卡。

(4)伺服卡:用来驱动伺服电机,精准控制电机运行动作。

选用研华PCI1240U(四轴)伺服卡。

硬件部分的工作原理主要是根据所确定的动作来完成。采用多功能采集卡进行模拟、数字信号的输入输出采集,伺服卡控制电机的各种运动状态(不同转速、方向)。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
7、

电机扭矩试验台的软件功能

电机扭矩测试台软件主要是控制硬件部分协同工作,控制伺服转速、方向,控制气缸松开、压紧,并实时采集输出信号数据,将所数据实时保存并绘制测试报告,以反映各参数之间的特性,并完成数据的分析处理。

软件主要有如下几个模块:

(1)数据存储模块:系统运行配置文件存储为ini配置文件;EPS电机的基本参数信息、伺服控制参数、实时采集数据等存放于SQLSERVER数据库,方便查询修改。

(2)基本设置模块:主要用来设置包括转速、产品型号、产品名称、判定参数、采集卡的各模拟量、数字量和计数器采集通道与实际参数的对应关系,以及用于测试绘制图表的各项坐标参数值如:角度、电压等。产品编号支持自动编号和扫描枪输入。

(3)权限管理模块:因系统配置比较灵活,为避免不恰当的误操作,以及测试数据结果的保密要求等分配相应的权限。

(4)测量功能模块:启动测试后将按照规定的流程进行一次完整的检测并计算测试结果、绘制图件报告,测试过程中可以手动干预退出检测。

测试程序流程如下:

①检测EPS电机是否安装,自动寻找起测点。

②伺服逆时针回转45°,稳定200ms,然后顺时针转动45°,并启动采集线程,实时绘制扭矩与角度关系曲线;伺服先回转45°是为了消除伺服启动过程加速时造成扭矩跳动,影响测试的真实性。

③伺服顺时针回转45°,稳定200ms,然后逆时针转动45°,并启动采集线程,实时绘制扭矩与角度关系曲线。

④正反行程测试完成后,伺服电机回到系统初始零位并松开气缸,根据测试数据计算正、反形成的损耗扭矩和波动扭矩,与基准值比较后判断产品是否合格。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
8、

管道切割机中电机启动方式的介绍

管道切割机的控制系统中,人机界面选用MCGS嵌入式触摸屏作为组态控制画面显示器。制作组态时将每个组件设置内部属性与PLC信息采集通道建立联系。可实现的功能主要有:

1)动态显示托辊电机的转速,切割焊枪的位移。

2)通过手动触摸界面按钮控制托辊电机的转速,设置管道切割的长度,切割气体电磁阀的启闭状态。

3)PLC非正常工作时,报警灯将发出报警指示。

4)切管时间的设置。

切管机开始工作时,选择手动控制方式启动托辊电机,打开焊枪出气阀,按下点火控制按钮,此时PLC的内置定时器开始计时。切割完成后按下关阀控制按钮,同时PLC停止计时。添加好多段切管长度后,选择自动按键,进入自动加工过程。每次焊枪定位后,电磁阀自动开启,之后开始点火。切割时间由第一次手动操作界面时,PLC的计时长度决定。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
9、

实现土层受扰动信号的远程采集以及盾构机刀盘的多电机同步驱动

综合试验台的设备组成掘进机试验台主要分为两部分:土箱加载部分及盾构机本体部分。土箱加载部分对实际掘进土质状况进行模拟,盾构机本体部分用来完成掘进施工。综合试验台的底层信号掘进机试验台土箱加载部分的信号主要是由压力传感器与位移传感器组成。而且这两类信号都不是标准信号,需要进行前期信号处理,再进行远程传输。盾构机本体部分的信号,大多是标准信号,较容易采集。

监控系统的组成由于盾构机的控制都是由PLC来完成,为了保证系统的统一性,基于全集成控制的理念,系统组成如下:土箱加载部分和盾构机本体部分,各用一套PLC、各用两套上位监控软件;后台数据分析用服务器一台。本设计用Profinet与Profibus实现土层受扰动信号的远程采集,以及盾构机刀盘的多电机同步驱动。使用交换机可以把网络分成盾构机本体、土箱加载部分和数据库管理三个网段,将负荷分隔开来,使整个网络性能增强。

盾构机本体部分的开关量与模拟量信号,通过ET200S采集到现场总线Profibus;土箱加载部分的土层压力信号,通过信号放大处理由ET200M采集到现场总线Profinet;土箱加载部分的土层位移信号,经过信号处理,通过485转换器采集到现场总线Profibus。通过现场总线Profibus,实现以PLC为控制器、以S120为执行器的盾构机刀盘的同步驱动控制。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
友情链接友情链接