工业伺服节能改造,关于企业节能改造代理信息聚合页,聚合企业节能改造代理:节能产品、节能设备、节能技术、节能方案等信息;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
您的位置:首页 > 企业节能改造代理
节能改造关注问答
1、

高压电机启动方式

电机容量小于电源容量且1000KW以下的可直接启动,这时的冲击电流是额定值的3-6倍(当然同步电机的直接启动指的是同低压的一样,先异后同等方法)。为了防止冲击电流过大,对于大电机必须考虑减少启动电流的启动方式:有串电抗启动,变频启动,液力偶合器启动等多种方式。有复杂有简单。

高压电机要实现调速,主要采用三种方式:

(1)液力耦合器方式。即在电机和负载之间串入一个液力耦合装置,通过液面的高低调节电机和负载之间耦合力的大小,实现负载的速度调节;

(2)串级调速。串级调速必须采用绕线式异步电动机,将转子绕组的一部分能量通过整流、逆变再送回到电网,这样相当于调节了转子的内阻,从而改变了电动机的滑差;由于转子的电压和电网的电压一般不相等,所以向电网逆变需要一台变压器,为了节省这台变压器,现在国内市场应用中普遍采用内馈电机的形式,即在定子上再做一个三相的辅助绕组,专门接受转子的反馈能量,辅助绕组也参与做功,这样主绕组从电网吸收的能量就会减少,达到调速节能的目的。

(3)高低方式。由于当时高压变频技术没有解决,就采用一台变压器,先把电网电压降低,然后采用一台低压的变频器实现变频;对于电机,则有两种办法,一种办法是采用低压电机;另一种办法,则是继续采用原来的高压电机,需要在变频器和电机之间增加一台升压变压器。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


>>详情点击
2、

电机扭矩试验台的结构组成

电机微扭矩检测试验台主要分硬件部分和软件部分,硬件部分由气缸、伺服电机、伺服卡、采集卡、工控机等来协调待测EPS电机的运转。软件部分主要是驱动伺服、气缸协同工作,控制设备的运行来完成检测,并从采集卡实时采集角度、扭矩传感器输出电压等数据参数,根据各项试验的数据绘制图表报告,计算产品损耗扭矩、波动扭矩,并标定产品是否合格。

测试台硬件本试验的硬件部分主要是来控制扭力传感器和电机、气缸的协调动作,实时进行数据采集,主要包含如下部分:

(1)气缸:测试过程开始前将伺服与待测EPS电机键槽推送到位。

(2)伺服电机:用来控制待测EPS电机的转动,并反馈角度。

(3)采集卡:用来采集各项实时参数,包括角度、扭矩。选用NIPCI6280采集卡。

(4)伺服卡:用来驱动伺服电机,精准控制电机运行动作。

选用研华PCI1240U(四轴)伺服卡。

硬件部分的工作原理主要是根据所确定的动作来完成。采用多功能采集卡进行模拟、数字信号的输入输出采集,伺服卡控制电机的各种运动状态(不同转速、方向)。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
3、

印刷机调整中电机的工作状态

丝网印刷间距调整系统电气包括间距调整电机、固态继电器、浪涌吸收器、终端继电器、交流电源等。与固态继电器接通的直流电源的电压为24V,与间距调整电机接通的交流电源的电压为110V。其中上、下限位传感器的开关量输出端与PLC输入模块连接,按钮开关接在PLC工作电源与PLC输入模块之间,PLC输出模块与固态继电器的线圈相连,PLC输出模块根据输入到PLC输入模块的开关量信号而输出控制信号来控制固态继电器的直流工作电源,固态继电器的触点接入间距调整电机的工作电源回路上,通过PLC程序控制间距调整电机的运转来调整丝网印刷间距,在上、下限位置之间具体的间距值由百分表直接读取。由上、下限位传感器限定丝网印刷间距的调整范围。

浪涌吸收器与固态继电器并联相接后串联接至间距调整电机,用来吸收固态继电器高频通断时产生的浪涌电压。终端继电器与PLC输出模块相连,其触点接入间距调整电机的工作电源回路。

PLC程序利用间隙刹车信号来控制间距调整电机刹车装置,消除传动结构的惯性影响。

当丝网印刷间距为下限时,PLC程序控制仅上升按钮开关能起作用,继而只可以上调丝网印刷间距;反之,当丝网印刷间距为上限时,PLC程序控制仅下降按钮开关能起作用,继而只可以下调丝网印刷间距;当丝网印刷间距处于间距下限和上限之间,则既可上调也可上调丝网印刷间距。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
4、

变频调速产生谐波对拖动电动机的影响分析

我国《节约能源法》第39条规定:“将变频调速列入通用节能技术加以推广”。在工矿企业众多的电力拖动系统是采用异步电动机拖动的,在电力拖动系统的节能技术改造中,除了优化托动系统装置的设计外,还要大力推广应用变频调速技术对拖动电动机进行节能技术改造,从而实现异步电动机的节能运行。

在变频调速的电力拖动系统中,变频器属非线性设备,其运行中必然会产生高次谐波。当变频器向拖动电动机供电时,必然会将含有颇丰的高次谐波电流输入电动机,从而对电动机造成不利的影响。为此,在对电力拖动系统实施变频调速技术改造中,还应采取相对应措施,消除谐波带给电动机的不利影响。

1变频调速的优越性

1.1变频器的调速特性好

实现异步电动机的变频调速,是发明异步电动机百年以来人们翘首以待的“世界之梦”。通过科技人员的不懈努力。提高和完善,其调速工作特性毫不逊色,即与直流调速系统相比,某些方面还超过直流调速。由于频率本身是数字量,即可实现在不需外部反馈的情况下,就能获得很硬的机械特性。同时还具有调速精度高、平滑、性能稳定、维护简单,易于实现生产过程的自动控制等特点。

1.2变频调速拖动系统故障率低

异步电动机拖动系统,可在不更换原电动机条件下,实施变频调速技术改造,即在电动机与电源之间接入相对应型号变频器,就能获得最佳调速效果。其拖动系统的故障率低,是得益于异步电动机的结构简单,转子回路内的电力不需从外部接入,故而出现故障几率极少。

1.3变频调速拖动系统可实现软起动

异步电动机若采用全压直接起动,其起动电流可达额定电流的5-7倍,必将对拖动系统或电网造成不良的影响。而采用变频调速起动,其起动电流一般不会超过额定电流的1.5倍。同时起动平稳,无冲击,实现异步电动机真正意义上的软起动。

1.4变频调速会延长设备使用寿命

变频调速技术在风机、泵类负载中使用,不仅能按负载运行要求实现转速调节,而且起动过程中振动和机械噪音很小。变频调速用于一般生产机械的电力拖动中,在起动、停止、减速、加速等工况下,均不会产生振动和冲击,故而可延长设备使用寿命。

1.5变频调速在加减速时转矩平滑

变频调速技术应用于输送机的节能改造中,在运行过程中若负载需加速、减速时,具有性能良好的软起动效果,并达到转矩平滑。尤是重载工况下起动时,可提升输出转矩,这是普通起动器所无法达到的效果。

2变频器产生谐波对拖动电动机影响

异步电动机由于结构简单、运行可靠、维护方便等优点,在工矿企业的电力拖动中得到广泛使用。对电力拖动系统的异步电动机实施变频调速技术改造,可在不更换原电动机条件下实现转速调节。但因变频器是非线性设备,运行中将会产生高次谐波,必将会对其拖动电动机造成不良影响,故而必须采取相应措施加以防范。

按常规设计的异步电动机,通常都是设计在额定频率和额定电压下工作的,只有在额定频率和电压下运行,才能保证电动机轴上的输出转矩,功率达到额定设计值。然而在变频调速工况下运行的异步电动机,因供电频率是个变量,故对电动机实际输出轴功率会有所影响。所以对不同工况下拖动电动机容量的选择,必须充分考虑这个影响因素。

通常使用的异步电动机,在额定功率和温升条件下运行,电动机的运行温度是不会超过设计值的。但在变频调速拖动系统中,由于输入电动机的电流含有颇丰的高次谐波,故而由谐波电流使电动机产生附加损耗。即使在额定频率下长期运行,由于谐波电流的影响也会造成输出转矩降低、效率下降、温升增高等异常等情况。异步电动机运行中,若是温升增高会导致线圈绝缘的挥发和降解加速,介电强度和体积电阻率下降,还可能造成线圈绝缘的炭化而丧失绝缘功能。

变频调速拖动系统中的异步电动机,因受高次谐波的影响,谐波电流所产生的磁场相对于转轴是高速旋转的,它所产生的轴电势比较高,可能会击穿轴承的油膜,使轴电流流过轴承而对轴承造成危害。

异步电动机的线圈间存在着分布电容,高次谐波电压输入时,各线圈之间的电压分担是不均匀的,往往会导致承担高电压线圈的绝缘老化加速,从而使首匝线圈成为绝缘损伤点。在变频调速拖动系统中,变频器输出电压的幅值为标准电压的3倍多,再加上变频器电压变化率(du/dt)很高,它所引起的振荡会使电动机应力变得更大,势必对线圈造成危害。

在开关频率很高的工况下,变频器和电动机之间连接电缆,若是长度过长时会产生驻波,将导致电动机端电压升高,致使电动机线圈承受端电压比电网电压高,这必然会加速线圈绝缘的老化,影响电动机使用寿命。

3变频器产生谐波的防范措施

3.1运用滤波技术消除谐波影响

为提高变频调速拖动系统中异步电动机的运行效率,必须运用谐波技术消除谐波影响。谐波器接在电动机输入端的,称为电动机端滤波;接在变频器输出端的,称为变频器输出滤波。电动机端滤波分为一阶RC串联型和一阶RC并联型两种滤波方式。变频器输出端滤波有四种结构:3.1.1LR并联型;3.1.2二阶RLC低通变频器输出端滤波;3.1.3改进型二阶RLC低通滤波,即把星型联接的阻容电路中性点与变频器直流母线中性点接在一起。该滤波器尺寸小、损耗少、成本较低、值得推广;3.1.4LC与RLC两级串联变频器输出滤波器。

3.2尽量缩短连接电缆长度

缩短变频器与电动机之间联接电缆的长度,为的是避免驻波产生而造成的影响。切勿将连接电缆过长部分盘成圈状放在变频器框内,这种处理方法欠佳,仍会造成谐波干扰。

其次,可在变频器进线电缆端套上约1.5~2m的金属蛇皮管,管皮外壳良好接地,这也是抑制谐波干扰的措施。此外,还可将变频器控制线屏蔽,并做好屏蔽层的良好接地,这也能防止谐波干扰。

3.3变频器和电动机的选用

在实施变频调速技术改造时,为提高电力拖动系统的运行效率,应选用不易输出高反射电压的变频器。若有更换拖动电动机,应选用专用变频器驱动的电动机。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
5、

电动机轴电流的分析

轴电流的危害

在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及更换带来的直接和间接经济损失也不可小计。

轴电压和轴电流的产生

轴电压是电动机两轴承端或电机转轴与轴承间所产生的电压,其产生原因一般有以下几种:

(1)磁不平衡产生轴电压

电动机由于扇形冲片、硅钢片等叠装因素,再加上铁芯槽、通风孔等的存在,造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴的两端感应出轴电压。

(2)逆变供电产生轴电压

电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。

(3)静电感应产生轴电压

在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的两端感应出轴电压。

(4)外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保

护、测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。

(5)其他原因

如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。

轴电流对轴承的破坏

正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过,由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状是轴承内表面被压出条状电弧伤痕。

轴电流的防范

针对轴电流形成的根本原因,一般在现场采用如下防范措施:

(1)在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与转轴可靠接触,保证转轴电位为零电位,以此消除轴电流。

(2)为防止磁不平衡等原因产生轴电流,往往在非轴伸端的轴承座和轴承支架处加绝缘隔板,以切断轴电流的回路。

(3)为了避免其他电动机附件导线绝缘破损造成的轴电流,往往要求检修运行人员细致检查并加强导线或垫片绝缘,以消除不必要的轴电流隐患。

一般通过以上处理,大多电动机的轴电流微乎其微,已对电动机构不成实质上危害。现场实践证明,经上述方式处理后实际使用寿命可由原几十个小时提高到上万小时,效果比较明显,尤其对高压电动机轴电流的防范效果好,对安全生产具有积极作用。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
6、

关于同步电动机的电力拖动问题分析

在同步电动机使用过程中,其稳定性的控制是关键。而电力拖动是影响其稳定性的主要因素,如何实现同步电动机的转速与同步转速相同是本文讨论的重点。

一、同步电动机的起动

正常运行状态下的同步电动机,其转子转速保持不变,确保定子与转子磁场因电磁作用所产生的旋转磁场处于相对静止状态,从而使其产生稳定的电磁转矩。因此同步电动机可以带动负载在同步速度下稳定运行。但由于能够处于稳定状态,直接起动将影响其机械性能。由于其使用电源为50Hz交流电源,加大了其起动难度。同时,三相定子绕组连接三相对称电源后,如定子磁场N极与转子磁极的S极接触,虽受到异性磁极的吸引,但由于转子自身的惯性较大,并不能使静止的转子发生转动。如此状态循环下,转子无法运转而只能在原处摆动。这使得因此同步电动机的起动问题成为难题,要确保其起动过程中稳定性不受到影响,可采取以下措施:

(一)辅助电动机起动

为了实现对同步电动机的牵引,可选一台异步电动机,并要求其极数与同步电动机一致。若同步电动机在起动时转子未加入励磁,需要将转子借助辅助电动机牵引以接近或达到同步转速,完成之后将直流励磁电流通入到同步电动机的转子励磁绕组中,将同步电动机利用整步转矩将接入电网。实际上,在完成定子的同步运行后,辅助电动机已失效。要降低不必要的电能损耗,应停止辅助电动机的运转。辅助电动机起动法主要应用于同步调相机起动和空载起动,但其需要较多的设备,且操作相对较为复杂。

(二)异步起动

异步起动主要靠安装在同步电动机上的异步电动机绕组实现。其操作原理为:将定子通电,靠起动绕组中所产生的异步电磁转矩实现电动机起动。在其转速接近同步转速时,通入励磁电流,通过同步电磁转矩实现电动机的同步运转。异步起动主要靠安装在电动机上的绕组实现,所需设备较少,操作方便。需要注意的是,要避免异步起动时励磁绕组的开路状态。这是由于开路状态下,过多的励磁绕组匝数将造成定子的感应电压升高,从而导致其绝缘性能下降甚至消失,容易造成安全事故,这是异步起动最大的缺点。同时,这种起动方式过程不能使磁绕组直接短路。否则将造成励磁绕组的单相电流过大,并且在旋转气隙磁场的共同作用下,附加转矩增大。根据异步起动的转矩特点,在其起动时,可选择实阻值约为励磁绕组10倍的起动电阻,并将其与转子励磁绕组连接。这样可以减小励磁绕组的感应电流,降低单轴转矩对电动机起动的影响。

二、同步电动机的变频调速

同步电动机的转速与供电电源频率之间始终保持同步并处于稳定运行状态,也就是说,电动机的转速只与电源频率有关,与负载之间无必要联系。也就是说,要实现其转速的改变,变频调速是唯一的方法。目前,变频调速系统主要为自控式调控系统和他控式调试系统。

(一)自控式同步电动机变频调速系统

自控式同步电动机的变频调速的优势在于消除了其转子振荡和失步而出现的安全问题,自控式同步电动机的变频调速系统由安装在电动机轴端的检测器为主,该检测器的主要作用就是通过信号的发出电力电子器件的频率和导通顺序,实现定子转速与转子转速保持同步,消除了负载对设备运转的冲击。目前,该变频装置可采用交-交型或交-直-交型。自控式同步电动机变频调速系统不再使用旋转接触式换向器,而是采用了电力电子逆变器与转子位置检测器。自控式变频同步电动机的变频装置具有差异,这要影响无换向器电动机的电流使用交流还是直流。

(二)他控式同步电动机变频调速

交-直-交变频器是他控式同步电动机变频调速系统的主要应用装置,其变频系统的结构与自控式变频系统相比较为简单,通常只有一台中变频器供电,因此操作较为简单,但相对来说,变频效率不高。但能够作为变频起动装置,确保同步电动机的软起动,或将其应用于多台同步电动机的同时调速。但他控式同步电动机变频调速性能较差,结构简单,存在转子振荡和失步等安全问题,因此应用并不多。

三、总结

同步电动机只有在转速等于同步速度时才能产生恒定不变的同步电磁转矩。该电动机的结构较为简单,主要问题在于其起动。如何保持转子与定子速度的一致是保证其稳定运行的关键。目前,同步电动机所用电源多为50Hz的交流电源,这使得其从静止状态到运转状态的转变较为困难。随着电力系统的快速发展,运行在系统上的主要负载为异步电动机和变压器。这使电网必须要担负电感性的无功功率,从而造成线路损耗,因此同步电动机的起动是其运行中最重要的问题。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
7、

浅谈行动导向教学法在电力拖动控制培训中的应用

企业间竞争的加剧,提高员工素质是提升企业竞争力的重要途径,培训是企业持续的动力源泉。电力拖动控制是维修电工必学的内容,这些知识与技能掌握的好坏,直接将影响着维修电工基本素质的培养。为了更好地提高培训职工素质帮助其取得过硬的技能,以及顺利通过技能考核,通过运用行动导向教学法中的启发式教学法取得了较好的培训效果。

一、前言

电力拖动控制有一个显着的特点,就是计算相对较少,理解的内容较多,动手能力训练的项目相对较多。那么怎样使培训学员更快、更容易、更轻松地学好它,经过近年的教学摸索,结合平时的实际技能等级考评的经验,在新的教学理念指导下,引入行动导向中的启法式教学法,使培训教学效果有了明显的提高,达到了企业职工培训之目的。

二、明确提出培训教学要求

作为教师要教好书,必须把握整个培训内容的灵魂,要有达到目标的实施计划与明确的要求,这样才能真正做到胸有成竹,达到事半功倍的效果。有的学员刚接触到电器,对电器较陌生,理解、记忆的内容较多。这时一定不能放弃,要为后面的学习打下了扎实的基础。在教学中做到心中有数,准确把握掌握、理解、了解的真正含义,在上第一次课的时候就向学员提出明确的要求:要求学员了解低压电器的结构,理解工作原理,熟练掌握选用图形符号和文字符号;掌握基本控制线路,做到熟练默画出基本控制线路,最终要求学员具备独立设计简单控制线路的能力;最后要求学员学会读图、识图;学会故障分析,掌握故障排除方法,最终达到中级维修电工的实际操作技能水平。有了明确的要求,学习起来就很轻松,一切问题就会迎刃而解。

三、灵活多变的教学方法

1.常用低压电器的教学方法。了解电器的结构,如了解接触器,运用实物讲解,通过对接触器进行拆装,要求学员把拆下的零件与图片进行对照,并说出它们的名称,加深了印象,这样就可以快速记住接触器,根本不用死记硬背。理解电器的工作原理,找一个CJl0-10/220V的接触器,把接触器的线圈两端加上额定电压,此时立刻听到“啪”的一声,接触器衔铁被吸合,带动触头动作;再断开电源,又“啪”的一声,接触器触点很快复位初始状态。掌握图形符号、文字代号,是为学习控制线路打下基础,必须在课堂内要掌握。了解电器的主要技术参数,进行对低压电器的选用,这是关键点,要求学员必须掌握的内容,也是学员解决实际问题的能力反映。

2.电动机控制线路教学方法。

(1)掌握控制线路的分析。从简单到复杂,逐步深入,如分析具有自锁正转制线路。短路保护、过载保护、欠压、失压保护是否齐全了,连续运转的电动机需要过载保护,故控制线路还要加入热继电器,问题到此解决好了。把控制线路内容讲解好了,学员对设计也有一个深层次的了解,教师的关键任务是教会学员的设计思路,慢慢地培养学员的设计能力。

(2)工作原理分析。如何解决工作原理分析,突破“死记硬背”。例如,正转控制线路原理的分析。方法是按图装接线路,这样通过实物操作按钮,观察到接触器的动作,电动机的真正转动,教师只要稍加引导就很快掌握了工作原理。其它复杂的控制线路分析按照控制要求进行,需要书写时一定要规范,让别人一目了然看清动作过程。

(3)如何培养学员的设计能力。例如三相异步电动机的正反转控制线路,首先是要明白只要改变三相电源中的任意两相相序,电动机即可实现反转,其次需要画出两个正转控制线路,在主电路接线时,只要对U相与W相的连线做小的变动,就成功地完成了正反转控制线路。最后我们可以提出问题,电路设计好了吗?学员可以自由组合讨论,可能会有学员提出,两个按钮同时按下时,主电路出现短路,自然地引入联锁的触点。只有在接触器线圈电路加上对方接触器常闭触头,才能防止短路事故的发生。

3.常用生产机械电气控制线路的教学方法。有了前面知识的准备,就能很顺利地把接下来的内容讲好,可以说很省力地完成任务。

(1)教会学员阅读电原理图的方法。首先分析主电路,主要是看电动机的名称、功率、数量;分别由什么电器控制,具有什么控制形式,如降压启动控制或双速控制,具有什么保护功能。其次分析控制线路,主要具有什么样的控制功能,如连续、正反转、两地等,以及明确接触器线路的供电回路。最后分析照明电路、指示电路。

(2)常见故障的分析。最好的方法是采用模拟机床控制线路或已经安装好的相关控制线路,教师提出几个常见故障问题,让学员自己来完成。加强学员的分析能力,培养学员的逻辑推理能力、思维能力,若分析故障的思路正确的话,其实际的故障也就很快排除。通过操作来获取故障现象,根据观察所得故障现象在原理图中分析,从而圈出故障范围,故障范围与故障现象必须一一对应。

(3)排除故障。要求必须断开三相电源,运用万用表欧姆档检测。根据结果作出准确判断,一定要排除故障,恢复正常。

四、理论联系实际

电力拖动与控制除了理论上要灵活掌握它的学习方法,还非常强调理论紧密联系实际,那就是加强实际操作训练。实际操作训练要跟理论同步教学,并且贯穿于整个教学的始终,只有这样反复的操作训练,才会取得更好的培训效果。行动导向教学的核心是关键能力的开发,促进学员的脑、心、手全方位被调动起来,真正从素质方面教育人手,把学员的培训学习转化为一种“游戏”形式,学习不枯燥。让学员愉快地在“玩”中学,在学中“玩”,愉快地、轻松地完成了培训任务。同时还培养了学员的学习能力、动手能力和解决实际问题的能力。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
8、

磨煤机主电机的简要论述

一、电机的基础知识

电机是机-电能量转换的设备,电机种类很多,功能各一。电机的设计、试验均要按照相关标准要求执行,出口电机通常按国际IEC标准要求执行,不执行电机使用国国标要求。特殊要求经双方协商鉴定协议后执行。

1.电机分类

2.异步电机通用标准

基本标准所列的是有关电机性能、冷却方式、防护等级、功率等级、安装尺寸、振动、噪声、电压等级等交流电机均需满足要求的标准,其中重要标准有电机旋转电机基本要求、振动、噪声、试验方法等。

二、电机基本结构

1、不论使用在何种场合或何种冷却方式的的异步电动机,电机主要零部件均包括有机座、定子、转子、轴承装置、出线装置等;对自然通风冷却方式的异步电动机包括通风罩;对空--水冷却方式的异步电动机包括空--水冷却器;对空--空冷却方式的异步电动机包括空--空冷却器及根据用户要求设置的其他辅助设备或设施。

2、电机结构简图

三、磨煤机电机种类

4)电机设计原则

电机设计除按相关标准外,电机设计需根据负载类型,如驱动风机、磨机、水泵等及使用环境(户外、户内)、双方协议要求设计制造。

2、YTM、YHP、YMPS磨机电机设计特点

磨机电机设计特点是根据磨机特点,运行工况要求而特殊设计的派生系列产品。为满足磨煤机的高起动转矩性能的要求,电动机采用单鼠笼或双鼠笼转子结构,并增加电机有效材料的用量,加大定子绕组和转子导条及端环的热容量,提高堵转转矩和最大转矩,限制了堵转电流,提高电机的安全堵转时间设计主要考虑,相对风机水泵类负载电动机,成本约增加30%。设计考虑有:

2.1轴承结构设计:

滚动轴承结构能满足要求的,尽量使用滚动轴承,并采用三轴承结构(柱轴承+球轴承、柱轴承),优点是:

a)能承受冲击载荷,频繁起动;

b)满足系统盘车要求。

需选用滑动轴承时:尽量选用油站,因电机容量大,冲击载荷波动特点易引起轴瓦缺油而损坏轴承,同时滑动轴承在系统低速盘车转速下无法建立油膜而损坏。

2.2转子结构设计:

转子结构设计是磨机设计的关键,理由是转子结构设计的适合性,可确保满足磨机起动力矩要求、起动热容量要求,及满足起动振动冲击时,铜条不断条或不烧毁铝条。常见转子槽形有:梨形、梯形、刀形、双笼、深槽矩形。

3、风扇磨机电机设计特点:

风扇磨机最大的特点是风扇磨机转动惯量非常大,是目前电机驱动负载中最大的,风扇磨机系统未配置液偶或变频起动等对电机有保护措施的结构。

3.1电机设计特点

a)通常结构设计电机能满足风扇磨机的要求,

b)根据风扇磨机转动惯量核算电机起动温升、起动时间,必确保起动时定子线圈、转子导条、端环起动温升满足要求。

c)起动力矩倍数满足系统负载转矩要求即可。

3.2起动要求

每一次起动,起动过程的损耗均会使定子线圈、转子导条温度增加。电机多次热态起动更会使温升叠加而发生安全事故,因此要严格控制起动次数。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
9、

中小型电机维修方法

对于中小型电机维修来说,必须先要找到具体的问题,进行具体分析,采集相关的维修技术数据、参数,既要规范准确,又要科学的进行适实修正。在浸漆和烘干的程序、温度与时间的要求方面,要求更加严格,做好相应的分析与控制,保证中小型电机维修能够顺利进行下去。最后在电机修理过程中更要采用准确的实验方法,确定中小型电机维修效果得到提升。

目前,电机在我们日常生活中已经被广泛应用,达到发电站,小到加用电器、儿童玩具,电机都发挥着重要的作用。中小型电机使用范围更为广泛,二次维修利用率高,所以维护电机寿命,降低生产成本,提升电机使用效果,必须将维修一项重视起来。

1观察具体问题

1)中小型电机的外观检查。维修人员首先要对中小型电机进行相应的外观检查,对于电动机外部的紧固件松动情况、零部件毁坏情况、设备表面腐朽情况、电动机各接触点和连接处的裂痕、变色情况等内容进行相应观察,维修人员具有专业的精神,从视觉上能够直接观察到这些情况,并分析出原因。造成这些不良现象的原因有很多,比如电动机局部过热、导体接触不良、仪表指示不规范等情况都有可能造成三相电阻不平衡等失误现象的出现;2)用听诊棒听电动机的声音,如果电动机内部有故障,就能够从中听出各种杂音,这些噪声形成的原因主要有:机械不平衡、轴承故障、联轴器连接不良、紧固螺钉松动等情况,这些不良的事项能够造成电动机内容击穿故障、加速性能下降等后果。所以当听到噪声之后一定要及时排查,寻找电机“致命点”,从而能够保证机械的正常运转;3)维修人员要用手对电机的温度、运转情况进行触觉上的感官检查,返现有机械过热、不良震动的现象,就要及时进行“诊断”,判断其出现的原因,进行及时“治疗”,造成这些现象的主要原因是:电动机基础强度不够、典雅不平衡、绕组故障、匝间短路、三相电压不平衡、联轴器连接不当、定子与转子之间的摩擦等情况致使。良好的触感能够帮助维修人员及时找到故障出现的重要原因,当然,这也需要维修人员长期以来对电机灵敏度的探测训练才能达成最佳效果。

对设备定时检查,在正常安装及使用过程中,严格按照标准执行,检修时认真,仔细。从细节做起,一定可以在设备生产运行中尽量避免电动机由于人为因素、设备自身引起的电气设备故障至设备的损坏,增加设备的运行率、完好率减少由此所造成的生产企业成本的增加。

2浸漆和烘干的程序、温度与时间控制

1)首先是预热阶段,为了更好地进行浸漆的工作,必须驱除绝缘材料与绕组中的潮气,预热的温度要保持在110摄氏度左右,预热时间要保持在4h~8h以内,其中平均每个小时要进行一次绝缘测量,当绝缘电阻稳定之后方可结束预热程序;2)第二阶段是浸漆,预热程序结束之后,绕组温度保持在70℃左右的时候才能进行浸漆的工作。此项程序时间保持在15min为最佳,直到不出现气泡为止。浸漆的时候,漆太黏可以用二甲苯进行稀释。普通的电机应该进行两次浸漆,如果是供湿热带使用的电动机,则需要进行3到4次的浸漆工作;3)最后一道程序是烘干,应该分成两个阶段进行此工作。处在低温阶段时,应该将温度控制在70℃~80℃,烘干时间为2h~4h,此阶段由于溶剂挥发较慢,所以能够避免表面很快结成漆膜。高温阶段,温度要保持在120℃左右,烘烤时间要保持在8h~16h左右,此阶段使绕组表面形成坚硬的漆膜。在进行烘干工作过程中,要注意每隔一个小时就要进行一次的绝缘电阻测量,以求达到最佳效果。

3电机在修理过程中检测的实验方法

我们先对220V的交流单相电机的启动、运转进行方式进行分析,首先是分相启动式,它是由辅助式启动绕组来进行辅助启动的,它的运转速率保持在定值之内,我们在进行维修检测过程中,应该看电机指示表的值,超过是不到这个定值,说明还没有达到预期效果。第二种就是电机静止下来之后的离心开关应该是接通的,电机在接通电源之后,电容参与启动工作,转子的转速达到定值的70%到80%的时候,离心开关就会自动断开。如果离心开关没能在此“活动”中发挥出它的效能,说明电机内部还存在问题,需要二次修理。当电机启动之后,启动绕组不参与运行工作,电动机以运行绕组线圈继续动作,说明电机运行正常,带离心开关的电机如果无法在短时间内发动起来,绕组线圈就很快被烧坏,多以必须采取相应的措施,进行灵活的修复工作,才能使整个电机环境得到改观。

对电机的检修工作来说,电机配件的检测与试验是非常重要的,具体的工作程序就是:1)检查电机配件式工作表面是否光滑,是否存在裂痕、条痕等现象,光滑的工作面才是正常的,否则要进行二次修理。绝缘外侧涂封要良好,用玻璃丝带进行绑扎,不能出现松塌的现象;2)电机配件与轴配合、各环和绝缘套的配合要坚固,用小锤进行轻轻敲击,检测铜环和套筒结合处应该发出清脆的金属声音。紧密连接电刷和铜环,各刷之间的压力应该不超过平均值的1/5;3)电机配件表面不应该有烧痕、刷痕出现,如果有,可以用油石或者细锉进行轻轻打磨,保持其光滑程度不断提升。同时,不要随便对电机派件进行车削的工作,因为每次车削必将降低配件的寿命;4)电机配件的质量与技术性能直接影响着电机的正常运转工作,在电机运转过程中也将会使各配件产生较高的温度,折损电机本身与配件的寿命,所以观察温度控制情况,在每个细小的环节上都要采取降温手段,可以保证机器的正常运转,增长电机寿命。

4结论

本文将中小型电机的维修内容与关键的注意事项进行了详细分析,提出了问题分析与技术数据参数修正、浸漆与烘干注意事项、严格的检测试验方法,从这些内容上找到科学、严格的维修技巧,以确保电机能够正常工作,降低损耗,并提升生产力,达到电机最佳技术效果。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
友情链接友情链接