工业伺服节能改造,关于节能省电设备信息聚合页,专注于节能省电设备:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
您的位置:首页 > 节能省电设备
节能改造关注问答
1、

电机能效提升的意义 节能推广分析及建议

中国中小型电机行业政策从国家层面主要就是推广节能高效电机。节能高效电机与普通电机相比,损耗平均下降20%、效率提高2%-7%;超高效电机则比节能高效电机效率平均再提高2%。电机系统节能对推行节能降耗战略的国策影响巨大。

为适应国民经济的发展要求,我国大力推广高效节能电机。高效节能电机是指通用标准型电动机具有高效率的电机。高效节能电机采用新型电机设计、新工艺及新材料,通过降低电磁能、热能和机械能的损耗,提高输出效率。

电机能效提升意义

业内人士指出,长期以来,我国电机寿命平均比国外低3%到5%,运行系统效率比国外低10%到20%。而在2013年中国电机保有量大约17亿千瓦,总耗电量为3万亿千瓦时,占全社会用电总量的64%、工业用电的75%。“如果电机系统的效率提高5%到8%,每年节约的电相当于两到三个三峡大坝的发电量。”中国节能协会常务副理事长王秦平称,超高效电动机的研发和生产,是提高电机系统效能的重要基础,铜转子电动机这种代表世界最高水平的电动机组建,将有利促进中国电动机能效的提升。

但国内高效电机标准未强制实施之时,企业认可度不高。美国2011年就已经强制执行IE3(效率等级),中国目前在强制推IE2标准。据魏华钧介绍,原来计划2015年推IE3标准,但国内电机行业没作好准备,个别企业没做到,多数企业做不到,所以推迟到2016年,比美国落后5年。

高效电机节能分析

为准确测试高效电机与普通电机的节能效果,有机构做过试验。选择了某电机生产企业YE3-160M1-2型号电动机与该企业早期生产的同规格Y160M1-2型号电动机分别在50%及75%负载率下进行了对比试验。

——试验数据说明

电机处于50%负载率运行时,Y160M1-2输出功率为5522.3W,YE3-160M1-2输出功率为5524.1W,可以等同认为在同一负载率下运行,其输入功率分别为6715.0W、6392.0W,转速分别为2965.4rpm、2976.7rpm。

电机处于75%负载率运行时,Y160M1-2输出功率为8284.6W,YE3-160M1-2输出功率为8265.0W,可以等同认为在同一负载率下运行,其输入功率分别为9679.0W、9270.0W,转速分别为2949.3rpm、2964.1rpm。

——节能效果分析

电动机处于50%负载率运行时,Y160M1-2电机效率为82.24%,YE3-160M1-2电机效率为86.42%,效率提高4.18个百分点;电动机处于75%负载率运行时,Y160M1-2电机效率为85.59%,YE3-160M1-2电机效率为89.16%,效率提高3.57个百分点。从现场测试效果来看,节能效果明显。

高效电机推广难题

1.对高效节能电机替代普通电机的认识不到位

电机作为拖动设备的动力装置,在大多数运行环境下,对其运行参数的要求不高,也不属于易损设备,很多上世纪六十年代生产的J系列电动机仍然在很多企业中正常运转。在市场经济下,有些企业目光短视,缩减成本进行采购,这与高效电机价格较高成了一对矛盾。只要能电机保证生产正常运行,大部分企业一般不会拿出额外的投资来更换电机,当然也更不会拿出超出普通电机很多的投资来更换高效电机,这是高效电机推广困难的主要因素。另外,信息不对称、观念错位、市场不规范、节能意识不强等也成为高效电机在我国推广的障碍。

2.对高效节能电机节能效果认知度不够

部分用能企业更换高效节能电机后反映,其用电量与原低效电机节能相比,节能效果并不明显,对高效电机节能率3-5%存在质疑。笔者以为,同等输出功率的更高一级能效电机的转差会减少20%-30%,转速比普通电机高10转以上,其拖动设备运行状态发生了一定改变,而对于大多数的用电设备,其电力消耗与转速的三次方成比例关系,例如,增加2%的运行速度将会造成增加8%的电力消耗,这就很容易抵消更换高效电机所预期的节能量。节能效果只考虑耗能,不考虑出力增加,是统计节能量偏小的重要因素。

3.高效电机价格偏高

高效电机从设计、材料和工艺上都采用了先进的技术措施,例如采用新型材料、合理的定转子槽数、风扇参数和正弦绕组等,来降低损耗,因此高效电机生产成本比普通电机高10-20%左右,有的甚至高50%,导致许多用户产生“节能不节钱”的观念。

4.电机销售模式决定高效电机推广困难重重

据有关资料显示,电机销售面向的三类客户其产品用量所占比分别为:终端用户占5%,代理商约占15%,下游产业的机械设备配套商占80%。由于由此可见,高效电机能否最终被市场接受,机械设备配套商的态度最为关键。由于大多数机械设备配套商并不是最终使用者,他们更多的是考虑如何节省一次性投入,提高自己终端产品在竞标中的价格优势,关注价格多于关注效率,缺乏主动采购高效电机的动力,而终端用户又没有决定采用高效电机的权力,这是高效电机推广的重要瓶颈。

5.电机系统节能技术改造合同能源管理项目推行困难

合同能源管理作为近几年兴起的一种市场化节能机制,对于促进企业提升能源利用效率发挥了积极作用。由于电机系统节能改造项目投资较大、节能量统计计量困难、回收期长等因素,有些节能服务公司仅仅以高效电机与普通电机的节电率来核算其回收期,不愿意开展电机系统技术改造的项目。

高效电机推广建议

据了解,未来工信部将充分利用财政补贴政策拉动高效电机市场。一方面,落实好节能产品惠民工程高效电机推广财政补贴政策;另一方面,逐步把选用高效电机作为高效风机、泵、压缩机等通用设备入围节能产品惠民工程的必要条件,延伸财政补助推广高效电机的产业链"。

高效节能电机采用新型电机设计、新工艺及新材料,通过降低电磁能、热能和机械能的损耗,提高输出效率,已经有比较成熟的技术,也就是说企业基本都能生产。然而,电机能效提升计划并未能如期完成。其中原因是长远利益和眼前利益的矛盾、短期投入和产出的矛盾、改革创新和因循守旧的对立,以及企业改革导致短期经济利益失衡的现实。但是中国改革开放的收获和经验告诉我们,革新一定是正确的。

产业前沿建议,综合工业先进国家和中国自己的实践经验,应该从这几个方面加大力度执行电机能效提升进程:第一,强制法规约束、奖惩分明、责任到位;第二,对经济(工业)发达地区提出更高的要求和执行目标;第三,加大财政补贴力度、重点企业重点补贴、超额企业额外补贴;第四、分类批量改造或建设全高效节能电机应用(试点)企业、变试点企业为标杆企业;第五,研究降低高效电机的生产成本;第六,尽量要求高标准甚至超标准,比如选择稀土永磁钕铁硼电机等。

2015年7月,工信部官员再度提出电机能效提升工作的重要性和紧迫性,要将这项工作作为当前乃至“十三五”工业节能减排领域的重要任务,并纳入工业绿色发展专项行动,下一步的重点方向是按照行业和领域用市场化的机制推进电机系统节能。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

步进电机抗干扰能力的分析

在试验机控制系统中,采用工控机测量冲击电压电流波形时,电磁干扰是影响测试结果的重要问题。为了使测量结果尽可能的准确,除了让分压器尽可能的靠近试品接地和在测量电缆末端增设衰减器等常规措施外,在测量回路中采用同轴电缆的平衡接法,能够消除由于地电位的升高而引起的电缆的共模干扰。

两根电缆的长度和波阻抗必须相同,并且首末端同时匹配。通过以上措施,减弱了球隙瞬间放电引起的电磁干扰,消除了地电位的升高引起的共模干扰。

抗干扰能力低是步进电机在控制电路中的一个显著缺点,要保证步进电机稳定可靠工作,必须采取相应的措施保护步进电机及其驱动器。该控制系统在设计时采取了以下必要的保护措施:

1)安装隔离变压器和低通滤波器,防止强脉冲干扰信号串入步进电机的供电电源,烧坏步进电机驱动器的供电模块;

2)遵守“一点接地”原则,将步进电机的PE端、脉动信号的负端、方向信号负端、电源滤波器外壳、步进电机的外壳、以及步进电机和驱动器之间的电缆保护套一点接地并且接在屏蔽箱的外壳上;

3)在脉冲信号和方向信号的输入端增加瞬态电压抑制二极管(TVS),保护步进电机驱动器。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


3、

浅谈IDirve矢量控制四象限高压变频器


2.3.2、矢量控制算法

其矢量系统的控制系统框图为:

在基于转子磁场定向的矢量控制系统中,首先把电机三相电流等同于两相静止的α-β轴坐标系,然后再转换成旋转的D-Q轴坐标系,此时:

注:

并使D轴与转子磁通方向重合,此时转子磁通的Q轴分量为零,可以得到:

把此式带入上式,经过化简可以得到:

矢量控制的目的是为了改善转矩控制性能,而最终实施仍然是对定子电流的控制。借助于坐标变换,使各物理量从静止坐标系转换到同步旋转坐标系,站在同步旋转的坐标系上观察,电动机的各空间矢量都变成了静止矢量,在同步坐标系上的各空间矢量就都变成了直流量,可以根据上述转矩公式的几种形式,找到转矩和被控矢量的各分量之间的关系,实时地计算出转矩控制所需的被控矢量的各分量值——直流给定量。按这些给定量实时控制,就能达到直流电动机的控制性能。由于这些直流给定量在物理上是不存在的,是虚构的,因此,还必须再经过坐标的逆变换过程,从旋转坐标系回到静止坐标系,把上述的直流给定量变换成实际的交流给定量,在三相定子坐标系上对交流量进行控制,使其实际值等于给定值。在矢量变换的控制方法中,需用到静止和旋转的坐标系,以及矢量在各坐标系之间的变换,交流电机的矢量控制,需要把电机的ABC三相定子静止坐标系的电流Ia、Ib、Ic、变换成α和β两相静止坐标系(Clarke变换),也叫三相-二相变换,再从两相静止坐标系变换成同步旋转磁场定向坐标系(Park变换),等效成同步旋转坐标系下的直流电流Iq、Id(Id相当于直流电动机的励磁电流);Iq相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标逆变换(Park逆变换)(Clarke逆变换),实现对电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交解耦控制,实现低频大转矩能力。

IDrive矢量控制四象限变频器,可广泛应用于提升类负载、对转速控制精度及速度要求苛刻、要求低频大转矩等复杂工况,帮助用户进一步提高工艺自动化水平,节能减排,增加更多的经济收益。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


4、

变频电机轴电压与轴电流的产生机理分析


3.轴承模型与轴承电流的产生由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均由一个轴承支撑,其结构如图3所示。以其中一个轴承为例,轴承的滚道由内滚道与外滚道组成,当电机转动时,轴承中的滚珠被润滑油层包围,由于润滑油的绝缘作用,轴承滚道与滚珠之间形成电容,如图3b)所示。这两个电容在转子-定子回路中以串联形式存在(为便于分析,不考虑滚珠的阻抗),可以等效成一个电容cbi,i代表轴承中的第i个滚珠。对于整个轴承而言,各个滚珠与滚道之间的电容以并联形式存在。所以整个轴承内可以等效成一个电容cb。据对轴承的分析,轴承可用一个带有内部电感和电阻的开关来等效。当滚珠未与滚道接触时,开关断开,转子电压建立;当转子电压超过油膜门槛电压时,油膜击穿开关导通,转子电压迅速内放电,在轴承内形成较大放电电流。va、vb和vc为电机三相输入电压,l’、r’和c’为输入电压耦合到转子轴的等效集中参数,cg为crf和cb并联后的等效电容。当轴承滚珠和滚道接触或者轴承内油层被击穿时,cb不存在,此时cg仅代表转子轴对机壳的耦合电容。电容cb是一个多个变量的函数:cb(q,v,t,η,λ,λ,εr)[2]。其中q代表功率,v代表油膜运动速度,t代表温度,η代表润滑剂粘性,λ代表润滑剂添加剂,λ代表油层厚度,εr代表润滑剂介电常数。轴承电容cb与定子到转子耦合电容csr,比定子到机壳耦合电容csf和转子到机壳耦合电容crf小得多。这样一来,耦合到电机轴承上的电压便不至于过大,这是因为crf与cb并联后的电容比耦合回路中与之串联的csr大得多,而串联电容回路中,电容越大承受的电压反而越小。事实上,根据分布电容的特点,很大一部分共模电流是通过定子绕组与铁芯之间的耦合电容csf传到大地去的,因此轴承电流只是共模电流的一部分。从图4可看出,形成轴承电流有两种基本途径。一是由于分布电容的存在,定子绕组和轴承形成一个电压耦合回路,当绕组输入电压为高频pwm脉冲电压时,在这个耦合回路势必产生dv/dt电流,这个电流一部分经crf传到大地,另一部分经轴承电容cb传到大地,即形成所谓的dv/dt轴承电流,其大小与输入电压以及电机内分布参数有关。二是由于轴承电容的存在,电机轴上产生轴电压,当轴电压超过轴承油层的击穿电压时,轴承内外滚道相当于短路,从而在轴承上形成很大放电电流,即所谓的电火花加工(electricdischargemachining-edm)电流。另外,当电机在转动时,如果滚珠和滚道之间有接触,同样会在轴承上形成大的edm电流。为了定量edm及dv/dt电流对轴承的影响,轴承内的电流密度十分关键。建立电流密度需估计滚珠与滚道内表面的点接触区域。根据赫兹点接触理论(hertzianpointcontacttheory),轴承电气寿命可用如下公式求得[2]:eleclife(hrs)=(7)式中,代表轴承电流密度。一般而言,dv/dt电流对轴承寿命影响很小,而由edm产生的轴承电流密度很大,使得轴承寿命大大降低。另外,空载时轴承损坏程度反而比重载时大得多,这是因为重载时轴承接触面积增大,无形中减小了轴承电流密度。

4.轴电压与轴承电流的仿真分析为进一步讨论轴承电流与pwm逆变器输出电压特性以及电机端有无过电压之间的关系,本文对dv/dt电流与edm电流两种形式的轴承电流分别进行仿真分析,结果发现,轴承电流不仅与逆变器载波频率有关,且与逆变器输出脉冲电压的上升时间有关,同时当电机端出现过电压时轴承电流明显增加。先假定电缆长度为零,根据轴承电流的存在形式可知,dv/dt电流主要是由输入跳变电压引起,因此dv/dt电流大小与逆变器载波频率和电压上升时间有关。逆变器载波频率越高,一个正弦波周期内产生的dv/dt电流数量也就越多,但此时电流幅值不变。脉冲电压上升时间是影响dv/dt电流幅值的决定性因素,另外分布电容的大小也影响dv/dt电流幅值。而edm电流产生的直接原因是轴电压的存在,因此轴电压的大小决定了edm电流幅值,轴电压的大小决定于输入电压的大小及电机内分布电容的大小。虽然逆变器载波频率和脉冲电压上升时间都会影响轴电压的形状,但轴电压的峰值与二者都没有关系,因此edm电流与二者也没有本质的联系,这是edm电流与dv/dt电流最大区别之处。当然,edm电流还与轴承油层的击穿电压有关,击穿电压越高,产生的edm电流越大。为讨论方便,假设轴承击穿电压大于或等于轴电压。

4.1改变上升时间tr仿真得到不同上升时间的轴电压与轴承电流波形如图5所示,其中图a)和b)为轴电压波形,图c)和d)为轴承电流波形,电流波形中第一次出现振荡的为edm电流,其他为dv/dt电流。由分析可知,1)tr增大轴承电流减少,包括dv/dt电流与edm电流。尤其是dv/dt电流幅值减小十分明显,但tr对edm电流的影响不大,这主要是因为edm电流由轴电压以及轴承阻抗决定;2)当tr小于一定值(约为200ns)后,dv/dt电流甚至高于edm电流;3)改变上升时间对轴电压的影响不大;4)特殊现象:轴电压在电压击穿时出现两次振荡,tr不影响第一次振荡,但影响第二次振荡,且第二次振荡随着tr的上升而减少,其原因是轴承短路后定子绕组到转子的耦合路径依然存在,所以出现一个dv/dt电流振荡。

4.2改变耦合参数及轴承参数定子绕组对转子的耦合电容越大,轴电压越高,dv/dt电流与edm电流均增加;轴承电容减小,dv/dt电流减小;但edm电流基本不变,此时轴电压上升。其原因是:在共模电路中,轴电压是由定子绕组对转子铁心的电压耦合造成的,维持这一电压的存在靠轴承电容以及转子对机壳耦合电容。由于后两者并联,再与前者串联,因此轴电压按电容值进行分配,电容越大压降越小。一般情况下,轴承电容与转子对机壳耦合电容比定子绕组对转子耦合电容大得多。在只改变轴承电容的情况下,轴承电容越小,整个并联电容等效值下降,轴电压反而上升,由于轴承上的dv/dt电流与容抗及dv/dt成正比,在dv/dt不变时,容抗减小,dv/dt电流下降。仿真结果如图6所示。

5.抑制办法从前面的理论研究和仿真分析可以看出,电机轴承电流产生的一个主要原因是逆变器输出的高频脉冲具有过高的dv/dt前后沿,由此可知,抑制轴承电流的有效办法就是降低逆变器输出电压的dv/dt。但是,逆变器本身输出的脉冲电压上升时间是由功率器件的开关特性决定的,因此只能在逆变器输出端附加装置改变其输出电压的dv/dt。降低逆变器输出电压上升沿dv/dt的一个最直接的办法是在逆变器输出端串上大的电抗器,即可构成所谓的“正弦波滤波器”,逆变器输出的脉冲电压在经过大电抗器后成为完全的正弦波电压,这样便可以消除轴电压与轴承电流。但是这种办法的代价是电抗器的功率损耗大,体积大,造价高,在普通的变频调速系统中应用不是很合适。本文采用折中办法,在逆变器输出端串接电感值不大的电感以抑制电流的快速变化,同时在输出端线间设置rc电抗以吸收输出电压的高次谐波,这样可以适当降低输出脉冲电压上升沿的dv/dt值,达到抑制轴承电流的目的。逆变输出滤波器降低了电机输入脉冲电压的电压上升率,这样一来,电机内分布电容的电压耦合作用便会大大减弱,轴电压以及由此引起的edm电流都会下降,同时由于电压变化率引起的dv/dt电流也会明显减少,因此滤波器可以有效地抑制轴承电流的产生。图8给出了加入滤波器(未接地)前后的电机轴承电流仿真波形,其中,逆变器载波频率为5khz,脉冲电压上升时间为200ns,电缆长100m。从图中可以看出,无论edm电流还是dv/dt电流都明显减少。仿真中还发现,将滤波器接地,无论dv/dt电流还是edm电流相对不接地而言均显着减少,其原因是rc吸收高次谐波的作用更强,能够更好地改善电压波形。

6.在高频pwm脉冲输入下,电机内分布电容的电压耦合作用构成系统共模回路,从而引起轴电压与轴承电流问题。轴承电流主要以三种方式存在:dv/dt电流、edm电流和环路电流。轴电压的大小不仅与电机内各部分耦合电容参数有关,且与脉冲电压上升时间和幅值有关。本文着重讨论前两种方式的轴承电流。dv/dt电流主要与pwm的上升时间tr有关,tr越小dv/dt电流的幅值越大。逆变器载波频率越高,轴承电流中的dv/dt电流成分越多。edm电流出现存在一定的偶然性,只有当轴承润滑油层被击穿或者轴承内部发生接触才可能出现,其幅值主要取决于轴电压的大小。以降低脉冲电压上升率为原则,设计一种在逆变器输出端串小电感并辅以rc吸收网络达到抑制轴电压与轴承电流的目的,仿真结果验证了该方法的有效性。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

鼠笼式交流异步电动机起动技术

1引言

三相鼠笼式交流异步电动机因其结构简单,性能稳定及无需维护等特点,在各个行业中得到了广泛的应用,但由于其在起动过程中会产生过大的起动电流,会对电网和其他用电设备造成冲击,受电网容量限制和保护其他用电设备正常工作的需要,要在电机起动过程中采取必要的措施。总的来说,在不需要调速的场合,考虑经济的因素,异步电动机的起动可以有两种方法:直接起动和降压起动。

2直接起动

直接起动也就是全压起动,起动方法简单,但交流异步电动机的起动电流大,可达到额定电流的4~7倍,对于国产电动机的实际测量,某些笼形异步电动机甚至可达到8~12倍。过大的起动电流会造成电动机发热,影响电动机寿命;电动机绕组(特别是端部)在电动力作用下,会发生变形造成短路而烧坏电动机;过大电流会使线路压降增大,造成电网电压下降而影响到同一电网的其他用电设备的工作。所以,一般情况下规定,异步电动机的功率低于7.5kw时允许直接起动,如果功率大于7.5kw,在条件不允许的情况下,就需要采用其他方法进行起动。

3降压起动

3.1电阻降压起动

起动原理图如图1所示。q1和q2为接触器;r为起动电阻。

(1)简介

电阻降压起动就是通常所说的定子串电阻起动。在定子电路串联电阻,起动时电流会在电阻上产生压降,降低了电动机定子绕组上的电压,起动电流也从而得到减小。起动时,q1闭合,q2断开,起动完成后,闭合q2。

(2)优点

起动平稳,运行可靠,结构简单,如果采用电阻降压起动,在起动阶段功率因数较高。

(3)缺点

由于起动转矩和定子电压的平方成正比,所以起动时电压降低将造成起动转矩减小,适用于轻载和不频繁起动的场合;起动时电能损耗大,起动成本高。

3.2自耦变压器降压起动

起动原理图如图2所示,q1和q2为接触器。

(1)简介

自耦变压器降压起动利用自耦变压器降低加到电动机定子绕组的电压,以减小起动电流。自耦降压起动的起动电流参照式(1),起动电压参照式(2),起动转矩参照式(3)。

式中,i1为自耦变压器原边电流,即使用自耦变压器时的电机起动电流;

ist为电机直起时的起动电流;ux为自耦变压器起动时的起动电压;t为自耦变压器起动时的起动转矩;tst为电机直起时的起动转矩;w2、w1分别为自耦变压器副边和原边匝数。

为满足不同负载要求,自耦变压器的二次绕组一般有三个抽头分别为电源电压的40%、60%、80%(55%、64%、73%)。

(2)优点

三个电压抽头适合不同负载起动时选择;可以适用于较大容量电动机;

(3)缺点

体积大,质量大,价格高,需要维护检修。

3.3星-三角起动

起动原理图如图3所示,q1和q2为接触器。

(1)简介

星-三角起动要求电机每个绕组有两个出线端,共6个出线端。起动时接成星形,起动完成后必须为三角形。起动时连接成星形的定子绕组电压与电流只有三角形连接时的1/1.732。连接成星形起动时的线电流只有连接成三角形直接起动线电流的1/3;起动转矩和电压平方成正比,因此也是直接起动转矩的1/3。

(2)优点

体积小,重量轻,运行可靠,检修方便。

(3)缺点

只适用于正常运行时接成三角形的电动机;只适用于轻载或空载起动;起动电压是定值,不能根据负载调整。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

煤矿电机拖动系统变频节能系统研究

随着电力电子技术、计算机技术、电力通信技术等的进一步发展,变频调速节能技术得到迅速发展且在工程实际应用中发挥了良好的应用效果。高性能的变频调速节能装置设备已被大量地引入到煤矿、钢厂、电厂等工业领域。通过大量研究和实践工作可知,交流电机采用变频调速技术升级改造后其通常可以获得30%~65%的节电效益。在煤矿开采过程中,随着井下开采和掘进的不断延伸,矿井巷道也变得越来越长,为了满足井下通风需求,需要增加通风风机的功率容量,这样大功率的电机直接起动对煤矿配电网冲击非常大,加上井下作业面需求风量波动较大,采用常规继电器直接控制方式会导致大量电能资源浪费。目前,大功率交流电机采用变频调速技术进行升级改造,已成为当代电机节能调速控制的潮流,其节能节电效果十分明显,加上科学技术的进一步发展,大功率、高电压变频器的制造成本也在明显降低,变频器起动性能和调速平稳性能得到大大提高,减少了电机起动对煤矿配电网的冲击。因此,结合煤矿井下通风系统的实际情况,采取变频调速技术对原电机控制系统进行技术升级改造,就显得非常有意义。

1电机变频调速控制原理

煤矿井下通信系统中风机电机拖动系统,由于受当时建设技术水平和综合投资资金的制约,存在电源浪费严重等问题。采取基于PLC与变频器的变频调速技术升级改造,可以达到节能降耗的目的。电机拖动系统的节能通常有两种方法,一种是直接采用节能电机,如永磁同步电机;另一种是采用变频调速等控制系统来动态调节电机输入电源频率,达到风机拖动系统输入与输出间的实时动态平衡,进而达到电机调节运行节能降耗的目的。基于PLC与变频器的电机变频调速控制系统具有体积小、重量轻、起动转矩大、控制精度高、功能强、可靠性高、操作维护简单便捷、兼容性强等优点,要明显优于以往常规电机调控模式,使用它除了具备调速稳定可靠的优点外,还可以节约大量电能资源。

风机电机的输出转速(转矩)同电机输入电源频率、转差率以及电机磁极对数三个因素有直接关系。电机输出转速可以表示为:

(1)

式(1)中:为电机的磁极对数;为电机运行实时电源频率;为滑差。

从式(1)可知,对于交流电机拖动系统而言,要实现电机拖动系统在实际调节运行过程中,具有较高调控稳定精确性和节能经济性,可以采取三种方法,即改变电机的磁极对数p、通过内部转子串联电阻等改变电机的滑差率s、改变电机实时电源频率f。改变电机磁极对数p和滑差率s,均需要改变电机内部结构,这在很大程度上受到电机制造工艺、生产技术等因素的制约。而调节电机输入电源的频率f,不仅不需要改变电机的内部结构,而且只需要外加变频器作为电机输入电源的调控单元,就能完成对电机控制系统的动态调节。同时采用变频调速后,能够经过变频器和PLC的动态调控,使整个电机拖动系统长期处于最优工况,达到节能降耗的目的。从技术性、调节运行节能经济性等方面来看,变频调速控制较其他节能方案在可行性、可靠性、精确性等方面更加优越,是电机节能降耗工程中常采用的技术措施。

2电机拖动系统变频调速节能改造的技术要点和功能效果

煤矿通风系统中的风机电机拖动系统采用基于PLC与变频器的变频调速技术升级改造方案中,其节能改造实现的基本控制要求包括以下两个方面:

(1)节能控制系统应具备抑制电磁干扰的相应有效技术措施,能够防止非正弦波干扰风机电机拖动控制系统中的电脑主机、计时器、传感器等精密仪器设备的高效稳定工作,也就是采用变频调速控制系统进行技术升级改造过程中,不能改变风机电机控制系统的其他功能单元和元器件设备的正常稳定运行性能参数。

(2)在变频调速节能运行过程中,当风量检测系统出现故障时,变频调速控制系统将以电机拖动系统上限频率进行恒功率运行,以确保系统最大的风量。当变频调速控制系统出现故障时,能够发出声响及指示灯指示,提醒运行管理人员进行相关设备性能检查,同时起动原控制系统(如软起动、继电器直接起动等)。

风机电机拖动系统采用变频调速控制技术升级改造后,能够取得较好的节能经济效益、延长使用寿命等功能效果,具体表现为:

(1)速度调节范围较宽。基于PLC与变频器的变频调速控制系统,其控制可靠性和精确度较高,且其速度控制范围较宽,理论上能够实现在1%~100%范围内的连续动态平滑节能调节控制。

(2)实时调节误差较小,精度较高。可以达到±0.5%的误差范围。

(3)电能利用效率较高。电机转换效率可以达到96%以上,同时电机拖动系统功率因素可以达到95%,节省了大量无功功率,降低了配电网变压器的无功调节负担,提高了供电系统的供电可靠性。

(4)具备软起动功能。能够有效抑制电机起动冲击电流,确保电机起动具有较高安全可靠性,可以延长电机拖动系统的综合使用寿命。

(5)节能节电效果十分明显。采取变频调速控制系统进行技术升级改造后,比常规继电器直接起动控制系统,其节能节电效率通常可以达到30%以上。

3电机拖动系统变频调速节能改造效益分析

3.1电机变频调速节能改造方案

一大型煤矿井下通风系统中共采用3台通风机(按照两用一备控制模式设计),其进口温度为22℃,进口压力为99.12kPa,升压为68kPa,轴功率为207kW,配置异步电动机型号为Y355M1-2-220kW/380VF级IP55,功率为220kW。为了提高煤矿井下通风系统运行的可靠性、经济性、节能性,结合煤矿井下通风系统的实际运行工况,按照“最小改动、最大可靠性、最优经济性”等改造原则,对煤矿井下通风电机拖动系统进行技术升级改造。决定采用基于PLC与变频器的变频调速控制对煤矿井下通风电机拖动系统进行技术升级改造,为了分析改造经济效益,决定1#风机采用变频调速运行方式,2#风机采取工频运行方式。

3.2电机拖动系统变频调速升级改造节能效益分析

在各项运行技术指标和环境均相同的情况下,1#风机与2#风机相比,1#风机其调节运行工况性能要更加平滑稳定,平均运行电流降低到326A,比工频运行额定电流的408A要直接降低82A,理论节电效率为:,实际节电效率为43%,节能节电效果十分明显。

4结语

根据通风空调系统电机变频调速节能控制技术原理,对煤矿井下通风电机拖动控制系统进行技术升级改造,使井下通风系统运行更加安全可靠和节能经济,同时煤矿井下通风系统电机拖动设备的综合使用寿命也得到延长。结合一大型煤矿井下通风系统具体节能改造工程的节电经济效益分析计算,可以得出煤矿井下通风系统变频调速升级改造的节能优越性。对煤矿井下通风系统风机电机拖动系统的变频调速节能升级改造,这个通风系统运行的稳定性和可靠性得到了进一步提高,井下通风温湿度指标也能满足实际煤炭开采需求。在现代变频调速控制技术的进一步完善和成熟下,变频调速节能改造电机拖动系统将成为煤矿井下通风系统节能升级改造的重要方法之一。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

电力拖动控制线路的故障分析

近年来,随着电子技术和控制理论的不断发展,相续出现了顺序控制,可编程无触点断续控制,采样控制等多种控制方式。由于电力在生产,传输,分配,使用和控制方面的优越性,使得电力拖动具有方便,经济,效率高,调节性能好,易于实现生产过程自动化等优点,所以电力拖动控制线路系统获得了广泛的应用。电力拖动控制线路常发生的故障主要分为硬故障、软故障和间歇性故障。本文首先介绍了现阶段电力拖动控制线路的发展情况,从应用重点、方式方法和具体分类等方面进行了具体介绍,论文的重点以电力拖动设备的控制线路为主要研究对象,针对上述三种故障原理进行具体的故障测量分析方法,并重点就电阻测量分析法进行了具体分析,给出了在进行故障分析时所需要注意的事项,为电力拖动控制线路的实际控制提供了理论依据。

电力拖动控制线路是用来控制电动机的运转的部件,其由各种控制电动机,电器,自动化元件及工业控制计算机组成,电动机是生产机械的原动机,将电能转化成机械能,分为交流电动机和直流电动机。传动机构是在电动机和工作机构之间传送动力的机构,如速箱,联轴器,传动器等。按电动机拖动系统中电动机的组合数量分,电力拖动的发展过程经历了成组拖动,单电动机拖动和多电动机拖动三个阶段。从电力拖动的控制方式来分,可分为断续控制系统和连续控制系统两种,在电力拖动发展的不同阶段两种拖动方式占有不同的地位,且呈现交替发展的趋势。

随着电力拖动的出现,最早产生的是手动控制电器控制电动机运转的手动断续控制方式,随后逐步发展为有继电器,由接触器等组成的继电接触式有触点断续控制方式。这种控制系统结构简单,工作稳定成本低且维护方便,不仅可以方便地实现生产过程自动化,而且可实现集中控制和远距离控制,所以目前生产机械仍广泛使用。但这种控制仅有通和断,这两种状态,其控制是断续的,即只能控制信号的有无,而不能连续控制信号的变化。为了适应控制信号连续变化的场合,又出现了直流电动机连续控制。这种控制方式可充分利用直流电动机调逮性能好的优点,得到高精度,宽度范围的平滑调速系统。

本文首先介绍了现阶段电力拖动控制线路的发展情况,从应用重点、方式方法和具体分类等方面进行了具体介绍,论文的重点以电力拖动设备的控制线路为主要研究对象,针对上述三种故障原理进行具体的故障测量分析方法,并重点就电阻测量分析法进行了具体分析,给出了在进行故障分析时所需要注意的事项,为电力拖动控制线路的实际控制提供了理论依据。

电力拖动控制线路常发生的故障主要分为硬故障、软故障和间歇性故障。其中硬故障又称突变故障,包括电动机、电器元件或导线显着的发热、冒烟、散发焦臭味、有火花等故障,多是过载、短路、接地、从而击穿绝缘层烧坏绕组或导线等原因造成的。而软故障又称渐变故障,除部分由于电源、电动机和制动器等出现问题外,多数是控制电器问题,如电器元件调整不当、机械动作失灵、触头及压接线头接触不良或脱落等。间歇性故障是由于元件的老化,容差不足、接触不良因素造成,仅在某些情况下才表现出来的故障。

判断故障范围的方法主要有排除法和逻辑分析法,但是这些方法的应用在高速发展的电机设备中已经不能完全满足。本文以电力拖动设备的控制线路为主要对象,针对不同的故障原理进行具体的故障分析,并重点就电阻测量分析法进行了具体分析。

在电动机控制线路工作中,同一个故障现象的出现可能是由不同的原因造成的,故障点的最终确定需要借助一定的工具,在熟悉原理图的基础上,采用合理法如下:

(1)用试验法观察故障现象,结合原理图初步判定故障范围

试验法是在不扩大故障范围,不损坏电气设备和机械设备的前提下,对线路进行通电试验,通过观察电气设备和电器元件的动作,检查各控制环节的动作程序是否符合要求,并结合故障现象作具体的分析,迅速地缩小故障范围,从而判断出故障所在。这种方法是一种以准为前提,以快为目的的检查方法,特别适用于对复杂线路的故障检查。

(2)用测量法确定故障点

测量法是利用电工工具和仪表(如测电笔、万用表、钳形电流表、兆欧表等)对线路进行断电或带电测量,是查找故障点的有效方法。下面介绍最常用的电阻分阶测量法和电压分阶测量法。

电阻分阶测量法如图1所示线路,若故障现象为按下启动按钮SBl时,接触器KM不吸合,说明控制电路有故障。

电阻分阶测量法是在看清故障现象后,断开电源的情况下,用万用表的欧姆档测量线路的直流电阻参数并最终找到故障点的方法。由于此方法是在断电的情况下操作,相对比较安全,是初学者最常用的检测方法。

测量检查时,在确保熔断器FU2良好后切断控制电路电源,把万用表的转换开关位置于适当倍率的电阻挡,然后按图1所示方法进行测量。

一人按下SBl不放,另一人用万用表依次测量O-1、0-2、0-3、0-4各两点之间的电阻值,根据测量结果可找出故障点,见表1。

这种测量方法如同下(或上)台阶一样依次测量电阻,所以叫电阻分阶测量法。

电压分阶测量法是在控制回路不断电的情况下,采用分阶测量电压的方式检修。若故障现象仍如电阻分阶测量法中一样。测量检查时,首先把万用表的转换开关置于交流电压500V的挡位上,断开主电路,接通控制电路的电源(这点与电阻分阶测量法不同),然后按图2所示方法进行测量。

检测时需要两人配合进行。一人先用万用表测量O和l两点之间的电压,若电压为380V,则说明控制电路的电源电压正常。然后由另一人按下SBl不放,一人把黑表棒接到O点上,红表棒依次接到2、3、4各点上,分别测量出0-2、0-3、0-4两点间的电压。根据其测量结果即可找出故障点,见表2。采用分阶测量电压的方式检修设备时,由于是带电检修,必须要有人监护,且操作时要格外小心,避免发生触电及短路事故。

在实际维修工作中,由于电动机控制线路种类很多,故障也不是千篇一律的,就是同一种故障现象,发生故障的部位也不一定相同。因此,采用以上故障检修方法时,不要生搬硬套,而应按不同的故障情况灵活运用,力求快速、准确地找出故障点,查明原因,及时正确地排除故障。

在进行上述方法进行故障检修时应注意的事项包括以下几点:

(a)在排除故障的过程中,故障分析、排除故障的思路和方法要正确。

(b)用测电笔检测故障时,必须检查测电笔是否符合使用要求。

(c)不能随意更改线路和带电触摸电器元件。

(d)仪表使用要正确,以防止引起错误判断。

(e)带电检修故障时,必须有另一名电工在现场监护,并要确保用电安全。

(f)排除故障应尽可能在较短时间内完成,以免给正常生产带来较大影响。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

带压拖动用注入防喷装置的研制及应用

目前,水平井多层体积压裂施工工艺在各油田开始得到广泛使用,但根据常规的井口配套装置,如井口大四通、单闸板或双闸板液动防喷器以及环形防喷器组合难以满足要求。新的施工工艺要求解决以下几方面问题:

①由于采用体积压裂,注入井内的压裂液排量达到3.5m3/min左右,常规的井口大四通只有两个旁通口,注入时只能有一个注入口,通径太小,不适合大排量注入工作。②压裂完一层后,由于需要拖动管柱,而常规的闸板防喷器不适合带压拖动工作,所以现场通常是先放喷,等井内无压力时再拖动管柱。而放喷过程需要10余小时或者数天,严重影响施工进度,且放喷会造成地层压力严重损失,井下工具砂卡等事故。③常规配置的井口大四通、闸板防喷器、环形防喷器组合高度在2.4m左右,井口高度高,起下油管困难,安全风险高,操作不便。

因此,依据APIspec16A-2004《钻通设备规范》及SY/T6690-2008《井下作业井控技术规程》研制一种带压拖动用注入防喷装置,避免了每段施工后的放喷过程并将以上三个设备集合为一体。在保证压力级别和安装通用性的前提下,大大降低了井口装置的安装高度,为井口操作带来方便,极大地提高了分段压裂施工效率,保证了施工安全性。

1技术分析1.1结构设计为满足施工要求,带压拖动用注入防喷装置结构包括注入部分、闸板防喷器部分、补偿式多用途环形防喷器部分以及泄压平衡阀组部分,通过几部分上下连接法兰有机结合在一起,大大降低整体高度,见图1所示。其中,注入部分包括主体、下法兰、旁通过渡法兰;闸板防喷器部分包括闸板体、推动液缸等;环形防喷器部分包括上法兰、主体、主胶囊、油管专用自封衬套等。泄压平衡阀组部分包括阀体、阀芯、弹簧、手柄等。

注入部分有四个旁通口道,比常规井口大四通多了两个旁通口,这样大排量注入时,注入通道面积就可提高3倍,大大降低了液流阻力。

闸板防喷器可采用单闸板或双闸板形式。半封闸板可关闭油套环空,保证压裂时油套环空反复承受高压,也避免了压裂时顶部的环形防喷器承受不必要的高压。

环形防喷器采用了补偿式多用途环形防喷器结构,内部有一个能够承受高压的自封油管衬套,保证井口在任何时候处于密封状态,满足带压拖动管柱的需要,满足井口环保要求。

为确保油管接箍带压通过自封胶套,减轻接箍对自封胶套的损伤,在半封闸板的侧面安装有泄压平衡阀组,利用该阀组的泄压、平衡功能,使接箍在低压状态下通过自封胶套。

1.2主要技术参数公称通径:Φ179.4mm(7-1/16in)密封油管规格:2-7/8";3-1/2"油管衬套自封静压力:34.5(5000psi)油管衬套自封动压力:13.8MPa(2000psi)主体静水压强度压力:103.5MPa(15000psi)液控操作压力:8.4-10.5MPa(1200-1500psi)主通径法兰连接型式:6BXΦ179.4mm,69MPa主通径法兰密封垫环型号:BX156旁通径法兰连接型式:6BXΦ78mm,69MPa旁通径法兰密封垫环型号:BX154外型尺寸(长×宽×高):1520×555×1100mm(单闸板时)1520×555×1400mm(双闸板时)金属材料温度等级:T-20,-29℃~121℃适用工作介质:油、水、压裂液2工作原理压裂施工时,井口部分安装如图2所示。

2.1大排量压裂液的注入体积压裂时,压裂液最大排量可达到180-200m3/h左右,井口管线连接时,其中3个旁通孔接注入管线,1个旁通孔连接放喷管线,如图3所示,注入通道增大后,可保证大排量压裂液低阻进入井内。在注入压裂液时,关闭注入六通上部的半封闸板,确保闸板以上零件不受压裂液冲蚀。

2.2带压上提油管压裂停泵后,不再放喷待井内压力在12-15MPa时向上拖动油管,利用环形防喷器油管衬套自封功能密封井内压力,防止井口喷溅。上提管柱时,在油管接箍通过自封胶套时缓慢上提,减轻接箍倒角对胶套的损坏。上提油管至下一个压裂层。

2.3带压调整管柱在拖动油管时,不仅需要上提油管,有时需要增加油管短节调整井内工具位置,就需要下放油管。下放油管接箍进入补偿式多用途环形防喷器时,阻力较大,接箍倒角会严重损坏环封油管自封衬套内壁。所以施工过程中对接箍如何进入环封通过自封胶套就有特殊要求。这就需要利用泄压平衡阀组的功能,将油管接箍顺利倒入井内。具体操作步骤如下:

①下放油管使接箍进入防喷装置,使接箍上台阶与环形防喷器上平面平齐,然后关闭半封闸板,关闭平衡阀,打开泄压阀,泄除环形防喷器与闸板间压力。

②在环形防喷器和闸板层环腔无压力的情况下,继续下放油管,使接箍进入环形胶套。直到油管接箍坐落于闸板上面,关闭泄压阀,打开平衡阀。观察平衡阀组上压力表,应升至与闸板下方井压一致。

③用大钩略微上提油管,解除油管对闸板的压力,打开闸板,下放油管接箍入井。

④如此进行循环操作,将井口外的油管接箍顺利下放入井内,最终使工具达到合适位置。

3性能特点①结构先进、集三个功能部件为一体,大大降低了井口操作高度;②操作方便,可以实现压裂后不放喷,提高了多层压裂效率,节约了施工成本;③解决了油管带压下放困难的问题,延长了环形防喷器油管专用自封衬套使用寿命;④油管专用衬套拆装、更换方便。

4现场应用带压拖动用注入防喷装置在室内验证试验的基础上,在长庆油田区域多个作业区进行了现场试验和应用,截止2014年11月累计作业5口井次。现场施工顺利,井内压力15MPa内油管管柱能够顺利起下,施工成功率达到了100%。该装置可以完全满足水平井多层压裂作业带压拖动管柱工艺技术要求,大大提高多层压裂效率,节约了施工成本,具有很好的推广应用前景。①开关迅速灵活,操作安全可靠。②避免了每段施工后的放喷过程,每层压裂节约施工工时5-15小时左右,多层压裂作业施工速度相对老工艺提高不少。③降低了井口操作高度,方便现场施工操作。④延长了衬套胶芯寿命,减轻了现场操作的工作量。

5结论①带压拖动用注入防喷装置的设计、制造、试验和检验全过程均按照APIspec16A-2004《钻通设备规范》的标准要求完成。②带压拖动用注入防喷装置实现了多层压裂作业中15MPa井内压力下带压拖动管柱工艺,大大提高了现场施工的速度,节约了作业成本。③该装置结构先进、设计合理,降低了井口操作高度,安装、使用维修方便。④该装置解决了油管带压下放困难的问题,提高了环形防喷器衬套使用寿命。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

微特电机的误差测试分析

当今社会文明最基本的支撑技术中有一项就是电机技术的发展和广泛应用,电机的使用改变了我国传统的生产和生活方式。而微特电机是电机技术领域最先进、最活跃、最具有潜力的一个分枝。在我国已经渐渐发展成为一个相对比较完善、独立的产业体系和技术体系,并且拥有自己的一套技术考核标准,成为应用较为广泛的一个电机门类。

微特电机在人们的生产生活中使用较为广泛,为人们带来方便的同时也存在一些问题,需要对微特电机的测试误差加以控制。微特电机的测试误差是测量过程中无法避免的,测量技术中检测仪器的测量误差和误差的记录方法一直是备受大家关注的话题。

一、微特电机的发展方向

微特电机的发展方向大致分为六个方面,第一,机电一体化的发展趋势,此阶段的特点是借助数字化的传感器、集成化的电路等技术实现电机系统的机电一体化。第二,高智能化的发展趋势,对电机的转矩、运行速度等进行了控制。第三,小型化和微型化发展趋势,追求低噪音,电机小巧的特点。第四,永磁无刷化的发展趋势。第五,直接驱动的发展趋势,要求高速大功率。第六,大功率集成化的发展趋势,追求电机驱动单元的网络集成化。

二、交流异步感应电机转速测量

电网频率的大小直接影响着交流电机的同步转速,电网频率低,交流电机的同步转速就慢;电网频率高,交流电机的转速就快,电机的实际转速随着电网频率的高低变化而发生变化,电网频率的不稳定导致交流电机转速出现不稳定。为了加强对交流电机转速的控制,有了相对转速和绝对转速的区分。相对转速是交流电机在50Hz电源频率标准下的转速;绝对转速则是电机运行标准中一分钟的实际转速。电动机的相对转速和绝对转速随着电网的频率高低呈现出两条不同的波浪线,当电网的实际频率大于50Hz的标准时,相对转速高于绝对转速;当电网的实际频率正好是标准的50Hz时,相对转速与绝对转速相同;当电网的实际频率小于50Hz的标准时,相对转速低于绝对转速。

交流电机的测试工作需要注意一些问题,当交流电机的测试工作涉及到转速是判断电机是否合格的临界点时,需要采用相对转速作为评价的标准,就是通过电网频率的分布得到电机自动伸缩闸门的时间。电网频率最高时,电机的转速也最快,闸门自由伸缩的时间最短,测量的结果是相对于标准50Hz的转速;电网频率最低时,电机的转速最慢,闸门自由伸缩的时间最长,测量的结果同样是相对于标准50Hz的转速,通过这种方法补偿电源频率不稳导致的误差,对电机的转速做出正确的评价。如果闪光测速仪中配备了50Hz相对转速测试的功能,交流异步电机的转速测试最好采用相对转速的测试档,以此避免因电网频率变化造成电机测试误差;如果没有具备相对转速测试档,需要对电网的频率进行鉴别。

三、多级旋转变压器电气误差测量中相对误差与绝对误差

相对误差是用户使用的标准指南,反映了“基准电气零位”误差偏离实际值的大小,使用者通过产品的相对误差值就可以知道使用过程中产生误差的大小。相对误差是对产品提出的更高生产要求,即使相对误差是绝对误差的两倍甚至是极端值,只要绝对误差很小,生产出来的产品就是合格的。相对误差符合电机的实际使用情况,所以现行的多级旋转变压器电气误差测量中普遍采用相对误差的表示方法。传统的电气误差标准只在乎生产制造,忽视了用户的使用环节,因此现行的误差标准针对传统标准的弊端做出了修改。相对误差标准对产品的生产规格和测试环节都提出了更加严格的要求。相对误差把“基准电气零位”作为参考点,真实、准确的反映电机的误差,误差的测试环节具有重复性。绝对误差可以选择“基准电气零位”作为测试的参考点,也可以选择其他的“电气零点”为参考点,两者测量出的绝对误差值都是固定不变的。因为相对误差选择“基准电气零位”作为误差测试的参考点,具有一定的局限性,无法精确地评点电机合格与否。

四、步进电动机的步距误差测量采用绝对误差

步进电动机步距误差分为累积误差和分步距误差。累计误差是指根据步进电动机起始位置的相对值、每一步转的实际角度与理论值的差,选取这一周转动中最大正值和最大负值的绝对值之和记为步进电动机步距误差测量中的累积误差。分步距误差是步进电动机每一步实际歩距和理论歩距之间的差,通常选取一周中步距误差绝对值中最大的数值作为实际的分步距误差。累计误差的测试点是随机选取的,因此累积误差不能采用相对误差进行表示,不同测试点产生的误差数值不同,误差的测试工作不具有重复性。绝对误差测试中无论测试的参考点是什么,都不影响误差值的变化,符合了步进电动机误差测试参考点随机性的特点。分歩距误差实际上是相对误差,测量得到的误差数值大小一样,只是测量误差选择的起点不同,每个起点中表示误差的符号不同。

五、微特电机误差和仪器仪表误差的不同之处

微特电机测量的绝对值中没有理论上的真值,只是有类似于真值的数值。例如步进电动机误差测量的歩距角和位置角,都只是理论上的角度,绝对误差就是测量时电机实际的旋转角度和理论角度的差。还有一种绝对误差测试中只有实际值没有理论数值,例如多级旋转变压器电气误差测试中测量得到的电气角度影响着正切函数电桥绕制的准确率。仪器仪表的绝对误差是测量值与真值的差,具有正负数的区分。真值需要借助高一级的测量工具得到,在没有利用低一级测量工具得到的测量数值时,此数值也只能是实际值,不可以称为真值。

仪器仪表误差的表示方式和电机产品的误差表示方式基本一样,但是由于电机产品误差测量具有一定的特殊性,误差的表示方法也存在一些不同。例如相对误差的表示方法,仪器仪表采用百分比的表示方法。虽然电机中旋转变压器的余弦函数采用百分比的表示方法,但在实际的操作过程中为使用的方便通常用各点的角度误差代替百分比的误差表示方法。多级旋转变压器电气误差的测量不能选用百分比的表示方法。多级旋转变压器电气误差是以“基准电气零位”为标准的电机实际旋转的角度和理论电气角度的差,并且即使随着转角的角度不断增大,误差数值的大小基本不变,误差数值之间不存在任何比例关系,因此多级旋转变压器电气误差用“基准电气零位”的最大正负值表示误差,不采用百分比的表示方法。

六、结语

伴随着科技的进步、经济的飞速发展和社会文明的不断进步,微特电机凭借它自身高效率、高节能和机电一体化的特点会迎来一片快速发展的新天地。虽然我国微特电机使用范围广泛,但是微特电机的产业结构布局还不完善,微特电机的技术水平发展还比较落后。我国必须加大微特电机技术研发方面的资金投入,提升微特电机在市场竞争中的核心力,使我国微特电机的发展迈向一个新的高度。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接