工业伺服节能改造,关于节能降耗工作方案信息聚合页,专注于节能降耗工作方案:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
您的位置:首页 > 节能降耗工作方案

铝型材挤压机节能改造方案

一、项目总述某铝型材公司作为铝型材行业的领军者、企业管理的先驱者,在响应国家节能减排号召、开展能效管理工作方面拥有良好的管理基础和实施条件。本报告结合该公司的管理

1852018-06-25 14:35:10

查看详情

钢铁厂液压站节电改造方案

甲方:某某钢铁集团乙方:苏州徕卡节能电气技术有限公司项目名称:某某钢铁集团 2#线液压站设备的液压伺服同步控制系统和智能化控制节能系统改造项目,达成技术协议条款如下:一、总

1362018-06-25 14:34:32

查看详情

油压机节电节能改造方案

第一章 油压机现状介绍 1.1 原机台配置情况 贵司现有油压机47台,进行配置,改造前机台具体配置如下: 品牌 吨位 T 数量 台 电机功率 电机转速 油泵排量 系统流

1202018-06-25 14:13:47

查看详情

压铸机节能改造方案

第一章 压铸机现状介绍1.1 原机台配置情况现有压铸机20台进行配置,改造前机台具体配置如下: 品牌 型号 数量 油泵型号 电机转速 RMP 电机功

1172018-06-25 13:52:35

查看详情

注塑机节能改造方案

某磨具企业,注塑机节能改造方案

682018-06-25 13:43:47

查看详情

江苏省发布“十三五”节能减排实施方案 未达标将问责地方政府

  中国江苏网7月3日讯 近日,省政府印发《江苏省“十三五”节能减排综合实施方案》。《方案》为江苏“十三五”持续深化节能减排划定了具体的路线图和

562018-11-06 13:30:58

查看详情

工厂节能降耗措施有哪些?

工厂节能降耗措施有哪些?徕卡节能电气,专业从事工业节能15年,在工业节能方面,主要对生产车间内大型液压油压设备做伺服系统节能改造。工厂的节能降耗项目,节能改造

532018-08-03 13:06:08

查看详情

伺服节能改造方案内为何配置的伺服同步电机要比原有的异步电机功率不一样

  伺服节能改造方案内为何配置的伺服同步电机要比原有的异步电机功率不一样?  伺服同步电机与异步电机工作方式不同,伺服同步电机的功率是随着负载的变化而变化的,普通电

452018-07-31 16:55:28

查看详情

关于公示苏州工业园区2017年度重点用能企业节能降耗低碳目标责任考核结果的通知

  关于公示苏州工业园区2017年度重点用能企业节能降耗低碳目标责任考核结果的通知  根据《苏州工业园区重点用能单位节能降耗低碳发展目标责任考核方案》(苏园经〔2016

412018-07-24 10:06:03

查看详情

注塑机做节能改造,一般都用什么节能方案?

  注塑机做节能改造,一般都用什么节能方案?  一、注塑机节能改造,目前主流的节能改造方式是:  1、液压动力系统进行伺服系统节能改造。  2、干燥筒的节能改造,余热回收

342018-08-03 14:07:08

查看详情

江苏省政府关于印发江苏省“十三五”节能减排综合实施方案的通知

  江苏省政府关于印发江苏省“十三五”节能减排综合实施方案的通知  苏政发〔2017〕69号  各市、县(市、区)人民政府,省各委办厅局,省各直属单位:  现将《江

262018-11-06 13:33:40

查看详情

空压机热能回收解决工厂热水供应能耗方案

  空压机热能回收解决工厂热水供应能耗方案  工厂内热水供应环境主要有:  1、电子行业:原水加热、纯水加热、空调加热、生活用水  2、纺织行业:生活用水、空调采暖、锅

232019-01-21 15:34:09

查看详情

液压站节能改造方案原理

液压站节能改造方案原理液压站节能改造未实施之前,电动机与油泵会持续工作,供油,当压力达到了安全阀(溢流阀)设定的压力,安全阀会自动溢油进油箱,保证压力满足工作需求。思索

192018-07-23 13:53:47

查看详情
节能改造关注问答
1、

推进电机节能的意义是什么

电机是一种应用量大、使用范围广的高耗能动力设备。据统计,我国电机耗电约占工业用电总量的60%~70%。实际应用中,我国电机的整体运行状况,同国外相比差距很大,机组效率约为75%,比国外低10%左右;系统运行效率为30~40%,比国际先进水平低20~30%。因此,我国的电机应用具有极大的节能潜力,推行电机节能势在必行。

一、目前电机能耗状况

改革开放20多年来,我国在能源利用上取得“GDP翻两番,而能源消费仅翻一番”的成就。但是,与发达国家相比,我国电力能源利用效率仍然较低,尤其是工业用电设备电能消耗高,浪费情况较为严重。大量的工业设备如风机、泵类设备以及传统的工业缝纫机、机械加工设备等,多采用交流电动机恒速传动的方案运行,导致交流电动机效率普遍较低。

风机、泵类设备也多采用调节风门和阀门的办法来调节流量,这种调节方法虽然简单易行,但它是以耗费大量能源为代价;在工业缝纫机、机械加工设备中,往往采用离合器、摩擦片调节速度,造成大量的待机损耗和制动能耗。

1.风机、泵类设备

在工业生产、产品加工制造业中,风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,不能随运行工况的变化进行相应的调节,白白浪费了大量的能量。在生产过程中,不仅控制精度受到限制,而且容易造成设备损耗,从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用居高不下。

泵类设备在生产领域同样有着广阔的应用空间,提水泵站、水池储罐给排系统、工业水(油)循环系统、热交换系统均使用离心泵、轴流泵、齿轮泵、柱塞泵等设备。根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏;还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备、影响生产、危及产品质量。

2.工业缝纫机、机械加工设备

传统的工业缝纫机电机是一款交流离合器电机,效率仅为40~50%;电机在工作时,不论缝制布料厚薄,始终全功率输出;在缝纫机待料待机时,电机通过离合器脱开负载,继续空载运行,造成极大的待机损耗。

在中低档机械加工设备中往往采用摩擦片调节速度,利用摩擦片的摩擦作用降低电机转速,从而达到调节速度的目的,不仅造成大量的制动能耗,还加快了电机轴的磨损,降低电机使用寿命。

目前,我国在家电行业已逐步采用变频调速控制技术以降低能耗,而工业控制领域中的许多速度调节方法还停留在传统技术层面上。根据美国能源部的一项数据显示,如果采用最新的高效率电机设备和一定的变频调速装置来替代旧的电机设备,工业用户至少能在现有基础上节省电能18%以上。

目前,许多国家均已指定流量压力控制必须采用变频调速装置取代传统方式,我国也在积极鼓励工业企业采用高效、节能的电动机、锅炉、窑炉、风机、泵类等设备。

二、以电子信息技术改造传统产业,达到节能降耗目的

随着电子技术、信息技术的发展,电子信息技术在产品中的应用日趋成熟,传统的电机技术与电子信息技术相结合,产生了“机电一体化”产品。“机电一体化”又称“机械电子学”,是在机构的主功能、动力功能、信息处理功能和控制功能上引进了电子技术,并将机械装置、电子设备以及软件等有机地结合起来构成的系统的总称。“机电一体化”电机与传统电机有着质的区别,“机电一体化”电机包含了控制部分既控制器及嵌入式软件和驱动部分既电机,它是利用嵌入式软件实现对系统的智能化模糊控制。这种智能化模糊控制不仅能有效提高系统的运行精度,而且可以根据系统负载变化实时调整电机输出转速、输出功率,充分达到节能降耗的目的。下面举两个例子来说明“机电一体化”电机的使用效果:

1.高效节能伺服控制电机在工业缝纫机领域的应用

前面提到传统的工业缝纫机电机是一款交流离合器电机,效率仅为40~50%;电机在工作时,不论缝制布料厚薄,始终全功率输出;在缝纫机待料待机时,电机通过离合器脱开负载,继续空载运行,造成极大的待机损耗。而高效节能伺服控制电机采用直流无刷电机作为驱动元件,效率达到70~80%;伺服控制系统内含嵌入式软件,系统随时检测缝制布料的厚薄,将信息实时传递给嵌入式软件,通过软件调节电机的输出转速和输出功率,始终使电机工作在最合理、最节能状态;在缝纫机待料待机时,系统停止工作,没有待机损耗。通过高效节能伺服控制电机替代交流离合器电机在工业缝纫机领域推广应用,可在该领域节能50~60%,每台缝纫机可节电576千瓦时/年,据缝纫机行业协会估算,全国现在生产使用的工业缝纫机至少200万台,那么随着高效节能伺服控制电机的替代使用,可为社会节电11.52亿千瓦时/年。

高效节能伺服控制电机不仅可以在缝纫机行业推广应用,也可以在工业集尘设备、机械加工设备中替代传统的交流电机,其节电效果普遍达到30%以上。

2.变频调速电机在风机、泵类设备中的应用

风机、泵类设备年耗电量占全国电力消耗的1/4,大量的电能由于交流电动机只能恒速输出、无法根据工况变化自行调节而浪费。变频调速技术是20世纪80年代末兴起的一种新型电力传动调速技术,它以体积小、重量轻、转矩大、精度高、功能强,可靠性高,操作简便,便于通信等功能优于以往的传统调速方式(如变极调速、调压调速、滑差调速等)。变频调速运行,是根据负载转速的变化要求,改变供电电流的频率,并配合电压的调节,以获得合理的电机运行工况。在不同的转速情况下,均保持较高的运行效率。变频控制技术的应用,不仅降低了电能消耗,同时能改善启动性能,保护电动机及负载设备免受瞬时启动的冲击,延长其工作寿命,还提高电动机及负载设备的工作精确度。

风机、泵类等设备采用变频调速技术实现节能运行是我国节能的一项重点推广技术,受到国家政府的普遍重视,《中华人民共和国节约能源法》把它列为通用技术加以推广。实践证明,变频电机用于风机、泵类设备驱动控制场合取得了显着的节电效果,普遍节电达到30%~50%。

三、电机节能的远景目标和发展方向

随着电子信息技术的发展,电机节能的前景十分看好。据国家能源部的初步估算:如果全面启动电机节能工程,推广变频调速、永磁调速等先进电机调速技术,改善风机、泵类电机系统调节方式,逐步淘汰闸板、阀门等机械节流调节方式,全国的用电量将下降15~20%而GDP保持不变。

通过研发高效节能的变频调速技术,在工业、交通、办公自动化等领域推广使用,将电机的平均能耗下降20~30%,这是电机行业“十一五”期间的节能目标。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

电机扭矩试验台的软件功能

电机扭矩测试台软件主要是控制硬件部分协同工作,控制伺服转速、方向,控制气缸松开、压紧,并实时采集输出信号数据,将所数据实时保存并绘制测试报告,以反映各参数之间的特性,并完成数据的分析处理。

软件主要有如下几个模块:

(1)数据存储模块:系统运行配置文件存储为ini配置文件;EPS电机的基本参数信息、伺服控制参数、实时采集数据等存放于SQLSERVER数据库,方便查询修改。

(2)基本设置模块:主要用来设置包括转速、产品型号、产品名称、判定参数、采集卡的各模拟量、数字量和计数器采集通道与实际参数的对应关系,以及用于测试绘制图表的各项坐标参数值如:角度、电压等。产品编号支持自动编号和扫描枪输入。

(3)权限管理模块:因系统配置比较灵活,为避免不恰当的误操作,以及测试数据结果的保密要求等分配相应的权限。

(4)测量功能模块:启动测试后将按照规定的流程进行一次完整的检测并计算测试结果、绘制图件报告,测试过程中可以手动干预退出检测。

测试程序流程如下:

①检测EPS电机是否安装,自动寻找起测点。

②伺服逆时针回转45°,稳定200ms,然后顺时针转动45°,并启动采集线程,实时绘制扭矩与角度关系曲线;伺服先回转45°是为了消除伺服启动过程加速时造成扭矩跳动,影响测试的真实性。

③伺服顺时针回转45°,稳定200ms,然后逆时针转动45°,并启动采集线程,实时绘制扭矩与角度关系曲线。

④正反行程测试完成后,伺服电机回到系统初始零位并松开气缸,根据测试数据计算正、反形成的损耗扭矩和波动扭矩,与基准值比较后判断产品是否合格。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


3、

直流无刷电机中输入脉冲的分析

有限转角直流无刷电机的输入为脉冲宽度调制(PWM),凭借改变PWM的占空比来改变流经电机电流的方向,以此来改变电机的转速与转向,由于加在电机电枢上的是PWM波形,即一系列方波形式的电压波形,所以建模首要的一步就是如何将PWM波与电机正常运转时电枢两端的电压、电机电流、电机旋转角速度以及电机旋转角度等建立联系。

模型主要由3个主要的处理模块组成,即PWM解析模块,电流计算模块以及角度计算模块。

电机的输入激励信号都是标准直流或交流电压信号,而在这里有限转角直流无刷电机的输入激励信号是PWM方波,因此建模的首要任务是如何建立PWM方波信号与电机电枢两端电压的关系,这也是整个建模的难点。

由于PWM是靠改变自身高低电平的占空比来控制电流的正负以及电机的正反转,所以经过综合考虑,决定采用对输入PWM提出了进行采样并计数的方法建立PWM与电机电枢两端电压关系的建模新思路,定时进行计数值的存储与计数值的清零。一般来说,采样时钟频率大约为PWM时钟的6-10倍,即每个PWM周期要采样6-10次,以保证采样精度。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


4、

电机与电力拖动在经济中的作用与发展趋势

在工农业中,国防事业和人们的日常生活中,电能是最重要的能源之一。电机在日常生活中起着重要作用,在电机中,电机碳刷,电机滑环是不可缺少的。与其他能源相比,电能具有转换经济、传输和分配容易、使用和控制方便等优点外。

自然界中不存在可以直接使用的电源,电能通常是由其他形式的能量转换而来的。其中将机械能转换为电能的装置就是发电机。

我们碳刷、滑环厂家以为电能的传输和分配离不开变压器。发电厂的碳刷质量十分重要,发电厂发出的电能通过电力网应能够实现远距离传输,一般碳刷发电机传输的电压为10-20KV,为了实现远距离传输、减少传输损耗,常用变压器将发电机发出的电压升高至110KV/220KV/330KV/500KV,甚至更高。

输送到用电地区后,要经过变压器将至用户能承受的数值,才能供用户使用。

电能的利用就是将电能转换为其他形式的能量。利用电动机将电能转换为机械能,拖动生产机械工作是电能利用的一个重要方面。用电动机拖动生产机械所组成的系统称为电力拖动系统。电力拖动系统具有以下几个优点:传动效率高、运行经济;电动机种类和规格繁多,具有良好的特性,能满足不同机械的需要;电力拖动系统操作和控制方便,能实现自动控制和远距离控制。

在现代工业企业中,几乎所有生产机械都是由电动机拖动的,如各种机床、生产线、风机、水泵等。可以毫不夸张的说,没有电动机、没有电力拖动技术,就没有现代化工业。

迄今为止,世界上几乎所有的电能是有同步发电机发出来的,发电机生产的大部分电能是通过电动机消耗的。因此,电机和电力拖动技术在国民经济中具有极其重要的作用。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

变频调速产生谐波对拖动电动机的影响分析

我国《节约能源法》第39条规定:“将变频调速列入通用节能技术加以推广”。在工矿企业众多的电力拖动系统是采用异步电动机拖动的,在电力拖动系统的节能技术改造中,除了优化托动系统装置的设计外,还要大力推广应用变频调速技术对拖动电动机进行节能技术改造,从而实现异步电动机的节能运行。

在变频调速的电力拖动系统中,变频器属非线性设备,其运行中必然会产生高次谐波。当变频器向拖动电动机供电时,必然会将含有颇丰的高次谐波电流输入电动机,从而对电动机造成不利的影响。为此,在对电力拖动系统实施变频调速技术改造中,还应采取相对应措施,消除谐波带给电动机的不利影响。

1变频调速的优越性

1.1变频器的调速特性好

实现异步电动机的变频调速,是发明异步电动机百年以来人们翘首以待的“世界之梦”。通过科技人员的不懈努力。提高和完善,其调速工作特性毫不逊色,即与直流调速系统相比,某些方面还超过直流调速。由于频率本身是数字量,即可实现在不需外部反馈的情况下,就能获得很硬的机械特性。同时还具有调速精度高、平滑、性能稳定、维护简单,易于实现生产过程的自动控制等特点。

1.2变频调速拖动系统故障率低

异步电动机拖动系统,可在不更换原电动机条件下,实施变频调速技术改造,即在电动机与电源之间接入相对应型号变频器,就能获得最佳调速效果。其拖动系统的故障率低,是得益于异步电动机的结构简单,转子回路内的电力不需从外部接入,故而出现故障几率极少。

1.3变频调速拖动系统可实现软起动

异步电动机若采用全压直接起动,其起动电流可达额定电流的5-7倍,必将对拖动系统或电网造成不良的影响。而采用变频调速起动,其起动电流一般不会超过额定电流的1.5倍。同时起动平稳,无冲击,实现异步电动机真正意义上的软起动。

1.4变频调速会延长设备使用寿命

变频调速技术在风机、泵类负载中使用,不仅能按负载运行要求实现转速调节,而且起动过程中振动和机械噪音很小。变频调速用于一般生产机械的电力拖动中,在起动、停止、减速、加速等工况下,均不会产生振动和冲击,故而可延长设备使用寿命。

1.5变频调速在加减速时转矩平滑

变频调速技术应用于输送机的节能改造中,在运行过程中若负载需加速、减速时,具有性能良好的软起动效果,并达到转矩平滑。尤是重载工况下起动时,可提升输出转矩,这是普通起动器所无法达到的效果。

2变频器产生谐波对拖动电动机影响

异步电动机由于结构简单、运行可靠、维护方便等优点,在工矿企业的电力拖动中得到广泛使用。对电力拖动系统的异步电动机实施变频调速技术改造,可在不更换原电动机条件下实现转速调节。但因变频器是非线性设备,运行中将会产生高次谐波,必将会对其拖动电动机造成不良影响,故而必须采取相应措施加以防范。

按常规设计的异步电动机,通常都是设计在额定频率和额定电压下工作的,只有在额定频率和电压下运行,才能保证电动机轴上的输出转矩,功率达到额定设计值。然而在变频调速工况下运行的异步电动机,因供电频率是个变量,故对电动机实际输出轴功率会有所影响。所以对不同工况下拖动电动机容量的选择,必须充分考虑这个影响因素。

通常使用的异步电动机,在额定功率和温升条件下运行,电动机的运行温度是不会超过设计值的。但在变频调速拖动系统中,由于输入电动机的电流含有颇丰的高次谐波,故而由谐波电流使电动机产生附加损耗。即使在额定频率下长期运行,由于谐波电流的影响也会造成输出转矩降低、效率下降、温升增高等异常等情况。异步电动机运行中,若是温升增高会导致线圈绝缘的挥发和降解加速,介电强度和体积电阻率下降,还可能造成线圈绝缘的炭化而丧失绝缘功能。

变频调速拖动系统中的异步电动机,因受高次谐波的影响,谐波电流所产生的磁场相对于转轴是高速旋转的,它所产生的轴电势比较高,可能会击穿轴承的油膜,使轴电流流过轴承而对轴承造成危害。

异步电动机的线圈间存在着分布电容,高次谐波电压输入时,各线圈之间的电压分担是不均匀的,往往会导致承担高电压线圈的绝缘老化加速,从而使首匝线圈成为绝缘损伤点。在变频调速拖动系统中,变频器输出电压的幅值为标准电压的3倍多,再加上变频器电压变化率(du/dt)很高,它所引起的振荡会使电动机应力变得更大,势必对线圈造成危害。

在开关频率很高的工况下,变频器和电动机之间连接电缆,若是长度过长时会产生驻波,将导致电动机端电压升高,致使电动机线圈承受端电压比电网电压高,这必然会加速线圈绝缘的老化,影响电动机使用寿命。

3变频器产生谐波的防范措施

3.1运用滤波技术消除谐波影响

为提高变频调速拖动系统中异步电动机的运行效率,必须运用谐波技术消除谐波影响。谐波器接在电动机输入端的,称为电动机端滤波;接在变频器输出端的,称为变频器输出滤波。电动机端滤波分为一阶RC串联型和一阶RC并联型两种滤波方式。变频器输出端滤波有四种结构:3.1.1LR并联型;3.1.2二阶RLC低通变频器输出端滤波;3.1.3改进型二阶RLC低通滤波,即把星型联接的阻容电路中性点与变频器直流母线中性点接在一起。该滤波器尺寸小、损耗少、成本较低、值得推广;3.1.4LC与RLC两级串联变频器输出滤波器。

3.2尽量缩短连接电缆长度

缩短变频器与电动机之间联接电缆的长度,为的是避免驻波产生而造成的影响。切勿将连接电缆过长部分盘成圈状放在变频器框内,这种处理方法欠佳,仍会造成谐波干扰。

其次,可在变频器进线电缆端套上约1.5~2m的金属蛇皮管,管皮外壳良好接地,这也是抑制谐波干扰的措施。此外,还可将变频器控制线屏蔽,并做好屏蔽层的良好接地,这也能防止谐波干扰。

3.3变频器和电动机的选用

在实施变频调速技术改造时,为提高电力拖动系统的运行效率,应选用不易输出高反射电压的变频器。若有更换拖动电动机,应选用专用变频器驱动的电动机。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

工业电机控制系统

电机消耗的能量几乎占全球电力的50%。随着能源成本的持续上涨,业内开始采用微处理器调速驱动器替代效率低下的固定速率电机和驱动器,这种新型电机控制技术与传统驱动器相比,能够使能耗平均降低30%以上。虽然调速电机提高了系统本身的成本,但是,考虑到电机能够节省的能量以及所增加的功能,只需短短几年即可挽回最初的投资成本。


通用电机设计

直流电机、无刷直流和交流感应电机是当今工业应用设计中最常见的电机。尽管每种类型的电机都有独特的性能,但基本工作原理类似。当一个导体通电时,例如线圈绕组,如果导体处于一个与其垂直的外部磁场内,导体将会受到一个与自身和外部磁场垂直的力。

直流电机:低成本和高精度驱动性能

直流电机是最先投入使用的电机类型,目前仍然以低开发成本和卓越的驱动性能得到普遍应用。在最简单的直流电机中,定子(即电机固定部件)为永久磁铁,转子(即电机的转动部件)上缠绕了电枢绕组,电枢绕组连接到机械换向开关,该开关控制绕组电流的导通和关闭。磁铁建立的磁通量与电枢电流相互作用,产生电磁扭矩,从而使电机做功。电机速度通过调整电枢绕组的直流电压进行控制。

根据具体应用的不同,可以采用全桥、半桥或一个简单的降压转换器驱动电枢绕组。这些转换器的开关通过脉宽调制(PWM)获得相应的电压。Maxim的高边或桥式驱动器IC,例如:MAX15024/MAX15025,可以用来驱动全桥或半桥电路的FET。

直流电机还广泛用于对速度、精度要求很高的伺服系统。为了满足速度和精度的要求,基于微处理器的闭环控制和转子位置非常关键。Maxim的MAX9641霍尔传感器能够用于提供转子的位置信息。

交流感应电机以简单、坚固耐用而著称,被广泛用于工业领域。最简单的交流电机就是一个变压器,原级电压连接到交流电压源,次级短路承载感应电流。“感应”电机的名称源于“感应次级电流”。定子载有一个三相绕组,转子设计简单,通常被称为“鼠笼”,其中,两端的铜或铝棒通过铸铝环短路。由于没有转子绕组和碳刷,这种电机的设计非常可靠。

工作在60Hz电压时,感应电机恒速运转。然而,当采用电源电路和基于微处理器的系统时,可以控制电机速度变化。变速驱动器由逆变器、信号调理器和基于微处理器的控制器组成。逆变器采用三个半桥,顶部和底部切换以互补方式控制。Maxim提供多种半桥驱动器,如MAX15024/MAX15025,可独立控制顶部和底部FET。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

试论交流变频拖动系统

交流调速技术的基本控制原理很早就已经确立,转子电阻控制、串级调速等方式早已经实用化,但是长期以来,异步电机交流调速技术在稳定性、可靠性、控制性能和维修等方面的不足,使其使用范围受到限制;尤其是在像电梯等对控制性能、可靠性等要求非常高的系统中,一直都是直流电动机调速技术的天下。1965年以后,由于晶闸管及控制晶体管的进步,控制线绕式异步电动机的转子电压进行调速运转的静止串级调速、采用晶闸管逆变器控制鼠笼式异步电动机进行调速运转等方式逐渐实用化,逐渐奠定了以逆变器为主流的技术基础。而且直接采用电动机调速的技术逐渐取代了其它各种调速技术(如采用皮带的机械式传动、采用液压联轴节的液力传动等),成为调速技术的主流。

1.变频调速技术的基本原理

异步电机,特别是三相鼠笼式电机,由于结构简单牢固、价格便宜、运行可靠和无需维护等特点,在交流传动中得到了及为广泛的应用;异步电机的调速可分为两大类,一类是在电机旋转磁场同步转速,恒定的情况下调节电机的电机转差率;另一类是调节电机的同步转速。异步电动机的调压调速、转子串电阻调速、滑差离合器调速、斩波调速等,都是在电机旋转磁场同步转速恒定的情况下调节电机的转差率来实现电机调速,这类调速方法简单,易于实现,但效率较低。变极调速和变频调速则是在保持邃本不变的情况下,调节电机的同步转速,来实现电机调速,这类调速方法属于高效率的调速方法,特别是变频调速是异步电动机高效调速方法的典型,它既能实现异步电动机的无级调速,又能根据负载的特性不同,通过适当调节电压与频率之间的关系,可使电机始终运行在高效率区,并保证良好的运行特性。另外异步电动机采用变频调速技术还能显着改善起动性能,大幅度降低电机的起动电流,增加起动转矩,同时还能加宽调速范围、提高力力矩性能指标等。可以说,变频调速是目前为止异步电动机最为理想的调速方法。

2.变频器的结构

综合考虑液压电梯控制系统的特点,主要考虑的是低频力矩指标和四象限工作能力;在变频调速液压电梯速度控制中,采用电压源型交-直-交变频器。变频器主要由五部分组成:整流回路、逆变器、控制电路、制动组件和保护回路。

2.1整流回路

整流器由二极管或晶闸管组成,它负责将工频电源变成直流。在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器部分产生的脉动电流也使直流电压变动;为了抑制电压波动,可采用直流电抗和电容吸收脉动电压(电流)。

2.2逆变器

现在的交-直-交变频器在采用脉宽调制(PWM)技术后,把调压和调频的任务统一由变频器来完成,最常用的调节方案采用SPWM方式,采用参考正弦电压波与载频三角波来互相比较,决定主开关的导通时间来实现调压,利用脉冲宽度的改变来得到幅值不同的正弦基波电压。脉宽调制型变频器不仅可以把调压和调频的功能集于一身,而且还因采用不可控整流,简化了整流装置,降低了整流器的造价,同时还改善了系统的功率因数,加快了系统的动态响应,特别是通过采用适当的调制方法可以使变频器输出电压中谐波分量,尤其是低次谐波显着减少,从而使异步电动机的技术性能指标得到了大幅度地改善。

2.3制动组件

一般的电压源型交-直-交变频器为不可逆变频器,即变频器正常运行为两象限运转,电源只向异步电动机输出功率。对于减速时需要制动力的负载,功率会从异步电动机向逆变器回流,此时变频器需附加一套制动组件,以实现电机Ⅱ、Ⅳ象限制动;制动组件采用制动电阻的形式,当异步电动机工作于制动发电状态时(转差率为负),将产生再生能量,再生能量存于变频器平滑回路电容器中,使平滑回路中直流电压升高,当电压升高到一定值时,控制电路使制动部分的晶体管道通,再生能源流入电阻器被消耗掉。再生能量较大时,控制单元和电阻单元将分别设置。对于需要急加减速度,并且加减速度频繁的场合(电梯),或对于制动为主要目的场合(液压电梯下行),需采用可逆变频器,实现电动机的四象限运行,即双向电动和能量回馈制动运行。可逆型逆变器可以将电机的再生能源反馈回电网。

2.4控制回路

向异步电机供电的主回路提供控制信号的回路,称为控制回路。控制回路由由运算回路、电流电源检测回路、驱动回路、测速回路等组成。其中运算回路将外部的速度、转矩指令同检测回路的电流、电压信号进行比较运算,决定变频器的输出电源和频率。电压/电流检测回路采用霍耳CT、电阻等元件,并与主回路隔离进行电压、电流的检测。驱动回路驱动主回路元件的导通、关断,它与控制回路隔离。速度检测回路通过异步电机轴上的速度检测器(TG、PLG)或其他途径,将速度信号送回运算回路,对系统构成速度闭环控制。

2.5保护回路

变频器控制回路中的保护可分为变频器保护和异步电动机保护。变频器的保护功能有:瞬时过电流保护、过载保护、再生过电压保护、瞬时停电保护、接地过电流保护、冷风机异常保护等。对异步电动机的保护有:过载保护和超速(超频)保护。

3.变频调速的控制方式

3.1V/F控制

异步电动机的转速由电源频率和级数决定,所以改变频率可以控制电动机调速运行。但是频率的改变导致电动机内部阻抗也改变,因此单独改变频率将产生由弱励磁引起的转矩不足和由过励磁引起的磁饱和等现象,使电动机的功率因数和效率下降:V/F是一种开环控制方式,变频器在改变输出频率的同时,必须控制变频器的输出电压,即使V/F为常值。V/F控制系统结构简单,但是静、动态性能均不理想,尤其在低频时的特性较差,需要函数发生器适当提高定子电压来补偿磁通的减少;这种控制方式基本上不适合在液压电梯中应用。

3.2转差频率控制

转差频率控制方式是在V/F控制方式的基础上发展起来的,需要检测出电动机的转速,然后以电动机速度与转差频率的和来给定变频器输出频率。由于能够任意控制与转矩、电流有直接关系的转差频率,与V/F控制相比,其加减速特性和限制过电流的能力得到提高。另外,它具有速度控制器,利用速度反馈进行速度闭环控制可适用于自动控制系统。在V/F控制中,如果保持电动机气隙磁通一定,则电动机的转矩及电流由转差频率决定。如果增加控制电动机转差频率的功能,那么异步电动机产生的转矩就可以控制。转差频率是施加于电动机的交流电压频率与电动机速度(电气角频率)的差频率,在电动机上安装测速发电机(PG)等速度检测元件,就可以知道电动机的速度,此速度加上转差频率(与产生所要求的转矩相对应)就是变频器的输出频率。根据电动机产生的转矩大体与转差频率成比例的事实来控制电动机产生的转矩,就是转差频率控制的原理,这种控制方式具有较高的静动态性能。

3.3矢量控制

矢量控制的特点:

(1)矢量控制特性比其他控制特性优越,可实现与直流电机相同的控制特性;

(2)矢量控制变频调速响应速度快,调速范围广,特别是低速段的调速性能优越,可满足频繁急加、减速度运转和连续四象限运转等场合;

(3)可以进行转矩控制。在电机静止状态时,能控制产生静止转矩;

(4)控制运算中一般需要使用电动机的参数,需要电动机的速度反馈,一般要求电动机为专用电动机。由于矢量控制方式完美的控制特性,可以很好地满足液压电梯的低频力矩指标、静动态性能。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

电厂电力拖动系统的节能研究

电厂做好电力拖动系统节能措施有一定的背景,它是电厂提高竞争力以及缓解资源紧缺形势的要求。文章从电动机角度出发,通过分析电动机节能措施提高电动拖动系统的节能性。

电厂电力拖动系统是电动机带动生产机械的运转系统,它是电厂发电的重要设备之一。随着发电厂生产过程自动化和机械化水平不断提高,电力拖动系统在电厂发电中的作用更大,电厂的许多主要设备和辅助设备都需要借助电动拖动系统。拖动系统在电厂发电中的作用增加也导致拖动系统成为电厂能源消耗的主要组成部分。据统计,电力拖动系统消耗的电能占电厂电能消耗总量的90%。因此,研究电厂电力拖动系统的节能情况,提高电力拖动系统的节能效果具有重要的意义。

1电厂电力拖动系统节能研究的重要性

1.1电厂提高竞争力的要求

近年来,我国不断推动电力企业市场化改革,电力行业的市场化程度不断提高,并逐步打破了电力行业的垄断局面,电力行业的竞争性和活力更强。例如我国21世纪放松电力市场价格管制,实行厂网分开,造成电力企业市场竞争显着提高。另外,在我国电力工业改革的推动下,市场竞争增加促使各个垂直垄断的企业实体开始发生转变,企业逐渐从垂直垄断体系脱离来,成为市场竞争的主体。在缺少垄断作用及市场竞争增强的背景下,电厂要增强竞争力,获取更多的市场份额,必须减少发电能耗,提高发电效率,降低成本。

1.2缓解资源紧缺形势的要求

改革开放以来,我国经济发展过程中消耗的大量资源,资源形势日益紧张。为此,近年来政府倡导节能减排,并加强对节能减排的监管。而电力企业属于高能耗和高污染行业,做好电厂节能减排工作对做好全国节能减排工作有着极大的促进作用。据统计,以电力行业为首的工业能耗以及污染物排放量占总数的70%。因此,有必要做好电厂电力拖动系统的节能研究,促进我国建设资源解决性、环境友好型社会。

2电力拖动系统节能措施

拖动系统主要由电动机、生产机械、电气控制系统、传动系统几部分构成,任一部分的运行情况对拖动系统的节能效果都会产生,尤其是电动机,电动机选择、供电电能质量、日常运行维护都对电力拖动系统的影响都较为显着,为此,本节从电动机角度分析电力拖动系统的节能措施。

2.1选择合适的电动机

首先,选择大小合适的电动机,电动机功率大于运行需求会导致电动机的负载率低于80%。其次,根据目标要求选择不同类型的电动机。例如基于转子效率,应选择鼠笼式电动机;基于功率因素考虑则应选择高速电动机;基于电压考虑则应选择高压电动机。其次,选择与运行速度匹配的电动机。电厂的风机类和泵类电动机能耗最高,电动机吸收能量的速度也更快,因而选择与运行速度匹配的电动机可降低电动机吸收的电能量。据统计,电动机运行速度超出额定值的2%,电动机多的电能消耗增加8%。最后,最好电动机的重绕和更换选择。电动机重绕可降低电动机的效率及可靠性,而更换电动机则涉及多项因素。针对电动机重绕和更换,可根据以下原则进行。如电动机功率超过20kW且运行时间超过15年,应更换电动机。如重绕费用比节能电动机的一半或更多,应选择更换电动机。电动机重绕时应选择高质量绕线,如符合ISO9000标准的清洁绕线。如重绕成本高于新式节能电动机的50%以上,应选择更换电动机。

2.2提供供电电能质量

一是控制电动机运行电压值,将电压控制在设计值内。电动机运行时电压允许出现10%的偏差,但是在电压长期偏高或偏低情况下,电动机的运行效率和功率因素更低,电动机的使用寿命也大大降低。二是减少三相电压不平衡状况,将三相电压不平衡度控制在1%以内。引起电压不平衡的主要因素包括某项加有单项负载、三根线大小不完全相同、线路故障。如三相电压不平衡度超过1%,将引起电动机定额量降级,进而影响电动机的运行效率。三是电动机处于高运行功率因素状态下运行。电厂发动机需要大量的无功功率,需采用补偿措施保障电动机运行功功率因素处于高水平状态,否则电动机容易因功率因素问题而降低运行效率。根据电厂的实际情况,电厂可通过并联电容器组方式,就地无功补偿。选择并联电容器组的同时要采取相应的措施使电容器组的投入快速而无冲击。此外,安装功率因数静补装置,进行滞相运行。

2.3做好电动机运行维护工作

维护人员要根据电动机生产厂商给出的建议和标准,制定电动机检测和维护计划,定期检测电动机运行状况,及时和排出发现电动机可能存在的故障,保证电动机可靠运行。例如以天或周为单位巡查电动机运行时的声音、振动和温度,以年为单位对电动机进行绕组和绕组对地阻抗测量,判断电动机是否出现接地故障。根据电动机使用情况进行润滑工作,选择高质量润滑油,润滑过程中要预防异物或水污染润滑部位。最后,建立电动机管理档案,记录每台电动机运行、测试数据和维修技术,以时间为顺序记录电动机绕组阻抗等参数测试结果,为电动机运行维护提供参考。

3结语

在电厂市场化程度不断提高、资源形势日益紧张以及政府倡导可持续经济发展战略的背景下,电厂必须重视电力拖动系统节能研究,做好电动机节能措施,不仅可以降低发电成本,提高电厂在市场中的竞争力,树立良好的市场形象。也会带来良好的社会效益,为我国绿色经济做出贡献。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

煤矿提升机交流拖动系统简介

大容量(≥3000kW)矿井提升机系统中传动方式多采用交流传动。高性能交流传动方案主要有两种:交-交变频传动和交-直-交变频传动。作为一种新型的高性能传动方式,交直交变频传动以其优越的调速性能、谐波污染小以及功率因数高等优点,在国内矿山提升系统中得到广泛使用。

直接转矩控制(DTC)技术是1985年德国鲁尔大学教授提出,1998年有瑞士ABB公司将直接转矩技术应用于变频器ACS1000上的交流调速传动的控制技术。它通过检测电机定子电压和电流,计算电机的磁链和转矩,并根据与参考值比较所得的差值,实现磁链和转矩的直接控制。从根本上解决了交交矢量控制(CYCLO)中的计算、控制复杂的问题。目前该技术已成功地应用于矿山、冶金、船舶等工业领域。

一、交直交直接转矩与交交矢量控制原理比较

矢量控制也称磁场定向控制,其原理是将交流电动机在三相坐标系下的定子电流Ia、Ib、Ic,通过三相/二相变换,等效成两相静止坐标系下的交流电流Ia1、Ib1,再通过按转子磁场定向旋转变换(d、q坐标),等效成同步旋转坐标系下的直流电IΦ1、IΦ2(IΦ1相当于直流电动机的励磁电流,IΦ2相当于与转矩成正比的电枢电流),然后模仿对直流电动机的控制方法,实现对交流电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度、磁场两个分量解耦进行独立控制。

直接转矩控制与矢量控制不同,它不是通过控制电流、磁链等量来间接控制转矩,而是把转矩直接作为被控量来控制,它也不需要解耦电机模型,而是在静止的坐标系中通过检测直流电压和相电流,计算电机磁通和转矩的实际值,然后,经磁链和转矩的Band-Band控制产生PWM信号对逆变器的开关状态进行最佳控制,有很快的转矩响应速度和很高的速度及转矩控制精度。

二、系统组成结构比较

交直交直接转矩控制系统(DTC)与交交矢量控制(CYCLO)比较,交直交直接转矩控制(DTC)结构简单。

1.功率元件IGCT相模块采用无熔断器保护结构。即便系统发生短路故障时,由于主回路断路器在60ms内能够分断电源,故功率元件模块无需使用熔断器保护。

2.无需功率补偿滤波器。ARU整流侧控制原理基于直流电压调节和功率因数调节,系统功率因数达1,动态可调,所以供电电网中无需设立功率补偿装置。

3.变压器数目减少。交交变频单绕组电机主回路需要三台定子变压器,同等性能的交直交变频电机只需要一台定子变压器即可。

4.变压器容量大大减少,对同等电机功率,DTC变压器的容量通常是交交变频变压器的50%。低速时,电动机的输出功率因转速低而输出功率小,由于ARU直流侧电压高达4900V,而使得整流器的输出电流也小,所以变压器的输出电流就小,整流变压器发热量就小,这就使得交直交回路变压器的容量选型可以比交交的小的缘故。

三、对电网质量要求的比较

由于交直交直接转矩控制(DTC)在整个提升循环中,定子变压器线电压和线电流控制在相同相位,对电网而言,属于线性负荷,功率因数恒为1,因此,对电网没有无功功率要求,所需电网功率就是实际有功功率。由于交直交直接转矩控制(DTC)系统不从电网消耗无功功率,因此,对电网造成的压降也非常小。而交交变频提升机在启动阶段,无功功率为最大,需装设无功补偿及谐波吸收装置。

四、电网谐波的比较

交交矢量控制(CYCLO)系统的最大致命弱点是对电网产生谐波,这些谐波不仅包括特征频率,而且含有随速度变化的边频以及运行时由于触发脉冲不对称、无环流死时等因素影响而引入的旁频。这大大增加了谐波治理的难度。

而对交直交直接转矩控制(DTC)系统,不仅不产生电网谐波,而且吸收过滤电网上的谐波。6脉动ARU整流器能够消除25次及以下谐波,12脉动ARU整流器能够消除55次及以下谐波,18脉动ARU整流器能够消除85次及以下谐波。

因此,交直交直接转矩控制(DTC)系统还适用于电网质量比较差的场合,如有谐波、压降大等。

五、动静态性能比较

交直交直接转矩控制(DTC)每25μs采样一次实际数据,估算电机模型,计算控制力矩,直接切换功率元件IGCT,控制响应时间为1~2ms左右,而PWM矢量控制(CYCLO)的力矩阶跃一般在10~20ms。因此,交交矢量控制(CYCLO)的矿井提升机,大多会产生力矩汶波,导致共振频率。采用OptimizedswitchinganglesPWM技术控制IGCT导通、关断的交直交直接转矩控制(DTC)系统则能消除力矩汶波,避免机械共振。

在低速时,DTC使用了专利方案,包括:

1.力矩汶波控制。专用软件通过调整力矩汶波频段,使力矩汶波最小化。

2.力矩前馈控制。控制系统根据负载变化动态预测力矩,以获得更平滑的控制。

3.高性能的速度位置控制。当速度设定为零速时,电机将保持绝对零速,由于编码器测量的位置也保持不变,以保证准确停车精度。

4.低的定子电流下降率。一般情况下,速度很低时,系统将降容使用。但DTC传动在低速甚至零速时,可短时输出100%额定电流,连续输出70%的额定电流。这是软件通过特殊的切换技术来平衡定子相间电流来实现的。

六、技术前景

新技术及新器件的发展趋势,要求交流传动系统具有主动前端(AFE)技术,以减少对电网的影响,几乎所有的国内外传动公司,都已投资研发带主动前端技术(ActiveFrontEnd)的传动系统,如ABB,Siemens。这样,Cyclo-交交变频传动系统将退出新系统的市场,技术及产品支持将会越来越少,从而大大增加提升机系统的维护费用。

交直交直接转矩控制(DTC)系统使用集成门极可换向晶闸管IGCT,采用无熔断器结构的相模块,结构简单。逆变侧,使用直接转矩控制(DTC)技术,动静态控制性能高,能消除力矩汶波和机械共振。整流侧,使用优化触发脉冲控制模式,不产生谐波,功率因数为1,无需功率补偿和谐波治理。同时,进线侧设有IFU(INPUTFILTERUNIT)进线滤波单元能吸收过滤电网谐波,适用于电网质量较差的场合。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接