工业伺服节能改造,关于注塑机节能系统信息聚合页,聚合注塑机节能系统:节能产品、节能设备、节能技术、节能方案等信息;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
您的位置:首页 > 注塑机节能系统
节能改造关注问答
1、

这有几个关于电机的小问题

1、为什么一般电机不能用于高原地区?

海拔高度对电机温升,电机电晕(高压电机)及直流电机的换向均有不利影响。应注意以下三方面:

(1)海拔高,电机温升越大,输出功率越小。但当气温随海拔的升高而降低足以补偿海拔对温升的影响时,电机的额定输出功率可以不变;

(2)高压电机在高原使用时要采取防电晕措施;

(3)海拔高度对直流电机换向不利,要注意碳刷材料的选用。

2、电机为什么会产生轴电流?

电机的轴——轴承座——底座回路中的电流称为轴电流。

原因:

(1)磁场不对称;

(2)供电电流中有谐波;

(3)制造、安装不好,由于转子偏心造成气隙不匀;

(4)可拆式定子铁心两个半圆间有缝隙;

(5)有扇形叠成的定子铁心的拼片数目选择不合适。

危害:

使电机轴承表面或滚珠受到侵蚀,形成点状微孔,使轴承运转性能恶化,摩擦损耗和发热增加,最终造成轴承烧毁。

预防:

(1)消除脉动磁通和电源谐波(如在变频器输出侧加装交流电抗器);

(2)电机设计时,将滑动轴承的轴承座和底座绝缘,滚动轴承的外圈和端盖绝缘。

3、电机为什么不宜轻载运行?

电机轻载运行时,会造成:

(1)电机功率因数低;

(2)电机效率低。

4、为什么在寒冷环境中不能启动的电机?

电机在低温环境中过长会:

(1)电机绝缘开裂;

(2)轴承润滑脂冻结;

(3)导线接头焊锡粉化。

因此,电机在寒冷环境中应加热保存,在运转前应对绕组和轴承进行检查。

5、为什么60Hz的电机不能用50Hz的电源?

电机设计时一般使硅钢片工作在磁化曲线的饱合区,当电源电压一定时,降低频率会使磁通增加,励磁电流增加,导致电机电流增加,铜耗增加,最终导致电机温升增高,严重时还可能因线圈过热而烧毁电机。

6、点击软启动,是否能节能?

软启动节能效果有限,但可以减少启动对电网的冲击,也可以实现平滑启动,保护电机机组。根据能量守恒理论,由于加入了相对复杂的控制电路,软启动不但不节能,还会加大能量的消耗,但它可以减小电路的启动电流,起到了保护的作用。

7、为什么漏电断路器,在使用变频器时易跳闸呢?

这是因为变频器的输出波形含有高次谐波,而电机及变频器与电机间的电缆会产生泄漏电流,该泄漏电流比工频驱动电机时大了许多,所以产生该现象。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


>>详情点击
2、

水泵电机节能方案

1、采用尼龙平皮带用尼龙平皮带来替换三角橡胶带

简单易行,技术上无特殊要求,只需进行简易计算,更换一副皮带轮即可。若条件允许,把电动机的间接传动,改为直接传动的水泵,可提高效率2~3%。

2、更换节能电动机

①应用Y系列(基本系列)电动机

采用Y型节能电动机,取代60年代J2、JO2产品。采用国际标准,提高效率水平,和堵转转矩,缩小体积,增加对电流噪声,振动的控制,而且还有结构合理,选型美观,通用性好,寿命长等特点。

②采用YX(派生系列)高效率电动机

该系列属低损耗,高效率电动机,机座中心高为H100-H280;功率范围为1.5kW-90kW;极数2、4、6。比Y系列电动机效率平均提高3%,损耗平均下降28.6%,与目前国外高效率电动机水平相当。不过这类电动机售价比Y系列高30%。此种电动机值得年运行时间长,负荷率高的纺织、化工、风机、水泵等选用。

3、水泵电动机的节能改造

①更换为节能风扇电机的通风损耗占总损耗的很大比例,因此,最大限度地降低通风损耗,对节能会有明显的效果。而且对JO2来讲,改造外风扇与风罩不需变动内部任何部件。

②用磁性槽泥(简称CC材料或磁泥)替换普通槽楔,填平电动机定子铁心槽口趋于平滑,经固化后,且与糟壁结合牢固,而成磁性槽楔。从而改善电机槽齿效应,降低了铜、铁、机械、杂散等损耗,给耗能电动机的改造提供了节电新途径。

4、采用较大截面的导线

采用较大截面导线后,不仅处于轻载运行状态,寿命也会大大延长,节电效果显着(采用铜芯电缆等法)。

5、注意轴承和绕组的清洁和润滑

轴承合理润滑与绕组的清洁正确地安装和良好地维护,能使电动机在运行中节能。

润滑脂过量或劣质,会增加摩擦损耗,降低效率;并会使油甩到绕组上,损坏绕组。因此,检修时应适当填充润滑脂,并采用优质锂基润滑脂。与此同时,还要防止潮气和有害气体侵入电动机内部,保持绕组温度在零度以上。

6、采用无功功率自动补偿

水泵电动机的负荷是感性的,其电流矢量滞后于电压矢量。这类负载消耗有功功率外,还消耗无功功率,而消耗无功功率大于有功功率。提高cosφ的办法,是在负载两端并联与感抗性质相反的电容器,用容性无功功率(负的)来抵消感性无功功率(正的)。实际上,电感和电容器中的无功功率波动过程恰好互差180°。即电感线圈吸收能量时,正好电容器释放能量,而电容器吸收能量时(充电过程),正好线圈释放能量。由于并联电容器具有这一特点,被广泛运用在输、变、配等电器设备中提高力率。

补偿方法:在无功功率自动补偿应用中,得出经验公式:电容器的无功运行电流,为电动机负载运行电流的56%。

7、采用S10型节能变压器

电动机力率的提高直接关系到电力变压器的容量型号的合理选用,和无功补偿等诸因素的制约,因此,从节电角度来看。重要的是应尽快以S7、SL7、SZ7、SLZ7系列10~35kV级变压器,取代SL及SL1系列耗能变压器、采用45°全斜接缝,无冲孔,玻璃纤维带绑扎,铁芯选用优质晶粒取向冷扎硅钢片。绕组导线选用缩醛漆包线。以及片状散热器等新材料、新结构、新工艺,它与相同等级老型号变压器相比,具有损耗低,体积小,重量轻,节约电能,节省运行电费等优点。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


>>详情点击
3、

步进电机通过联轴器带动滚珠丝杠转动实现对试件的拉伸压缩

系统结构组成及工作原理电子式蠕变持久试验机主要用来完成材料拉压、蠕变、松弛、持久、周期性加载等力学试验,它主要由3个部分构成,分别为运动模块、测量模块和控制模块。运动模块主要由步进电机、联轴器、丝杠螺母以及横梁夹具等组成。其工作原理如下:步进电机通过联轴器带动滚珠丝杠转动,由丝杠螺母传动驱动横梁作直线运动,并利用夹具实现对试件的拉伸压缩。测量模块主要由位移传感器,力传感器、引伸计、放大器以及AD采集卡等构成。

步进电机多用于开环控制,但为了提高试验机精度,作者利用位移传感器对其进行位置闭环控制,用来对开环控制误差进行有效的校正与补偿。力传感器和引伸计分别用来测量拉伸过程中的作用力和变形量。

控制模块主要由上位机、电机控制卡和细分驱动器等组成。上位机将采集的数据进行实时处理后,给电机控制卡发送位置、速度和加速度指令;电机控制卡按照接收到的指令,产生相应的脉冲信号;细分驱动器依据产生的脉冲信号,使步进电机实现平稳运转。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
4、

异步电动机转矩控制软起动仿真

软起动技术有利于改善异步电动机起动过程中产生过大电流问题,本文详细分析、比较了变频、液阻和晶闸管串联等软起动方法的特点,采用晶闸管串联技术和转矩控制策略,实现异步电动机固态软起动。利用MATLAB/SIMULINK对转矩控制闭环系统建立了仿真模型并进行了仿真实验,仿真结果表明采用转矩控制方式,软起动装置能够很大程度地降低起动转矩和起动电流,能够很好地控制异步电动机的启动过程。


1引言

鼠笼式异步电动机在全压直接起动时,起动电流可以达到额定电流的5-7倍,会造成电动机绕组因过流引起过温,从而加速绝缘老化。同时,硬起动造成的过电流也势必会造成电网电压急剧下降,影响其他电力设备的正常使用,且电网电压的急剧下降,使起动转矩减小,有造成起动失败的可能性。异步电动机降压起动目前应用比较普遍的有:串电阻或者串电抗起动、Y—△起动。自藕变压器降压起动等方法。这些传统降压起动方法很大程度上缓解了大容量电机在相对较小容量电网上起动时的矛盾,但是它们只是降低起动电流冲击,并没有从本质上解决问题,而且还造成起动转矩同时在减小,在切换瞬间还会产生二次冲击电流。近年来,随着电力电子技术的发展,使无电弧开关和连续调节电流成为可能。为电动机的起动提供了全新的思路,从而出现了电机软起动技术。晶闸管串联式的高压软起动器应运而生,如美国的BS公司。英国的CT公司。法国的TE公司、瑞典的ABB公司等软起动器系列产品已成为市场的主流。其中美国的BS公司采用晶闸管串联技术生产的重压6~13.8KV软启动器,最大功率可以达10MV。国内的中源ZY—FR1000系列软启动器性能达到国际先进水平,湖北省万洲电气有限公司WGQH系列高压固态软启动器也具有国内先进的水平。

2软起动方法

2.1变频启动

变频器用于交流电机起动,起动电流小、起动力矩大、调速曲线平滑调速范围大、运行平稳,起动速度快,是交流电机理想的起动方式。但是,高压变频器更适用于需要调速的电机系统,且价格高昂,单纯做软起动装置使用太浪费。

2.2液阻式降压软起动

2.2.1液阻软起动

液阻式一种由电解液形成的电阻,起到点本质是离子导电。电解液中有两个导电极板,即固定板和动级板,伺服系统控制动级板得距离来改变起动电阻值。

2.2.2热变电组软起动

与液阻的主要区别在于电机不动,热变电阻呈现明显的负温特性。

液阻式软起动装置的不足时电机起动时,液体电阻发热,要消耗一定的电能,且不适合频繁起动场合。但因其投资少,性能好(无级控制,热容量大),不会产生谐波影响电网,使用于高压发大功率和重载起动。

2.3磁饱和电抗软起动

磁饱和电抗器的等效电抗值是可控的,它利用铁心的饱和特性,通过改变直流励磁改变其电抗参数,可以实现电流闭环控制,且可实现软停车。与高压晶闸管软起动相比,其缺点是控制快速性比较差,噪声较大,也会产生一定的高次谐波。

2.4开关变压器软起动

用开关变压器隔离高压和低压,通过改变其低压绕组上电压来改变高压绕组上的电压,从而达到改变电机端电压的目的,以实现软起动。不必采用晶闸管串联技术,可靠性大大提高,且谐波很小。此外,电压电流可全范围调节。可构成闭环控制,时间常数小,反应迅速。

2.5晶闸管串联软起动调压电路,

在高压电网和电动机之间接入反并联晶闸管通过控制晶闸的触发角进行斩波,起到调压作用。由于单只晶闸管还不足以高压,所以采用串联技术,例如在设计6KV高压软起动装置的时候功率单元常采用3只晶闸管串联的方式提高耐压值。该系统对均压电路、触发电路的性能要求较高,对元器件参数的一致性要求比较高。可实现输出电压连续可调,能完全免除对电网和电动机及机械设备的冲击。

综上所述,晶闸管具有体积小、实现软启动停容易能量损耗小、启动方式多样化等特点。同时,多个晶闸管串联,需要解决同步触发、均压、均流等技术关键。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
5、

变频调速技术在电机拖动中的有效运用

随着科学技术的不断发展,变频调速技术得到了飞速发展和普遍应用,将其应用到电机拖动中,具有一系列的优势和价值。本文简要分析了变频调速技术在电机拖动中的有效运用,希望能给大家提供一些有价值的参考意见。

一、变频调速技术概述

变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控制等技术于一身的综合性电气产品。

变频调速技术已深入我们生活的每个角落,变频调速系统的控制方式包括V/F、矢量控制(VC)、直接转矩控制(DTC)等。V/F控制主要应用在低成本、性能要求较低的场合;而矢量控制的引入,则开始了变频调速系统在高性能场合的应用。近年来随着半导体技术的发展及数字控制的普及,矢量控制的应用已经从高性能领域扩展至通用驱动及专用驱动场合,乃至变频空调、冰箱、洗衣机等家用电器。交流驱动器已在工业机器人、自动化出版设备、加工工具、传输设备、电梯、压缩机、轧钢、风机泵类、电动汽车、起重设备及其它领域中得到广泛应用。

二、变频调速技术在电机拖动中的应用

电机拖动包括诸多方面的内容,如直流电机、电机系统的运动方程以及直流电机的静态特点、动态特定以及变压器等等。我们从控制类别方面来讲,转速开环是卸油泵电动机的变频调速系统,电源变频调速系统则是利用恒压频度比来控制的。在实际的使用过程中,要想控制输出直流电压,主要依据的是电压。

通过速度给定,可以获得整个电力系统中的控制信号,即使在跳跃变化的情况下,进行速度给定,也可以对逆变器的输出电压以及电流的规律性变化进行协调和控制,因此,我们将给定积分器给设定下来,用斜坡输出信号来替代跳跃输出,这样就可以对电机的正转和反转进行有效的控制。通过实践得知,在整个电机拖动系统运行过程中,利用正负电压来有效划分速度给定以及给定的积分器输出。因为正值的信号电压是控制电流器的输出电压和逆变器的输出频率,那么设置的变换器在绝对值方面,没有较大的差异。通过大量的实践研究证明,变频器系统具有较为广泛的调速范围,并且有着较好的调速平滑性,可以对电机启动时性能进行有效的改善,因此可以有效适用于电机拖动中,此外,也可以广泛应用于船舶电力拖动中。采用的控制信号是一样的,只需要协调输出电压和输出频率,更加理性的认知变频调速技术,就可以在电机拖动中更好的应用变频调速技术。

三、变频调速技术的合理应用

1、无功补偿原理的作用

无功补偿装置装设的目的是对供电效率进行提高,对供电环境进行改善,它将两种负荷之间能量交换的原理给充分利用了起来,来对供电变压器和输送线之间的损耗进行补偿,在供电系统中,无功补偿装置是一不可获取的一个组成部分;只有合理选择了补偿装置,将其应用于电力系统中,次啊可以对电网功率因数进行有效的提高,对网络损耗进行最大限度的减少,促使电网质量得到有效提高。

在对无功补偿装置进行选择时,通常是将分组投切的电容器以及电抗器应用过来,在一些特殊情况下,调相机以及静止无功补偿装置也是不错的选择;满足了无功平衡的要求,为了促使电压质量标准的要求得以实现,还需要将调压装置应用过来,要将分层分区以及就地平衡的原则应用到电网的无功补偿中,同时,还需要将变电站的无功调节能力给充分纳入考虑范围,并且将电压优化以及功率因数给大力推广开来,积极的应用先进的技术,如电网无功管理系统软件等,促使电网质量得到更加好的提高,促使电网更加可靠的运行。

2、变频器符合标准:

相较于变压器和发动机的发热时间,半导体器件的发热时间往往较小,通常在计算时候都采用的是分钟,如果出现过载超温问题,将会带来很大的问题。因此,就需要严格规定负载条件,需要对变流器的运行种类进行划分,第一级额定输出为电流完全输出,过载情况不会出现;第二级也可以连续输出基本负载电流,短时过载运行可以达到百分之五十;第三级到第六级过载则需要更长的时间。目前在市场上,一般只对第二级以及第一级进行销售。此外,还需要结合生产机械负载性能和调速范围等要求,来对变压器进行合理选择。

四、变频器运行的可靠性

有专业人员曾通过大量的调查研究发现,温度会在很大程度上影响到变频器运行的可靠性。如果变频器有着较大的功率,那么往往将空气冷却的方法应用过来,也就是将换气扇合理安装于顶部,这样就可以更好的进行换气,向室外排放柜内的热空气,对不断恶化的装置环境进行有效的改善;因为变频器是完全封闭的,需要控制其内部温度在502摄氏度以下,但是对于南方的夏季,往往计较炎热,温度通常会在50摄氏度以上,要想保证变频器能够正常可靠的运行,就需要采取一系列的降温设备,如空调等等,但是这些外部设备的应用,虽然在较短时间内对温度进行降低,却会对正常通风产生影响,并且室内噪声也会得到较大程度的增加,一次这种措施是不够合理和科学的。因此,我们就需要结合具体情况,合理安排空冷的位置,最好将管道式通风装置应用到柜顶,这样就可以向室外直接排放室内的热空气。

通过上文的叙述我们可以得知,随着时代的发展和社会经济的进步,社会的电力需求越来越大,电力系统运行的稳定性和安全性将会对人们的日常生活和工作以及国家的长治久安产生直接的影响,针对这种情况,就需要不断的改善和完善电力系统,更好的服务于人们生活和社会发展。而且,通过大量的实践研究表面,将变频调速技术应用到电机拖动中,具有一系列的优质和价值,可以对电力系统的安全稳定运行起到保障作用,相关的工作人员需要不断努力,革新技术,总结经验,将变频调速技术更好的应用到电机拖动中。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
6、

基于可靠性状态监控的电力拖动监理研究

电力拖动作为占据主导地位的动力系统,检修水平的高低直接控制着生产系统的运行水平,从而决定收益水平。通过对检修体制的分析和审视,以实例对比,分析检修体制监理方法,提出在线监测法,提高了电力拖动系统的可靠性。

拖动即指以各种原动机带动工作机械(负荷)产生并完成运动,电力拖动即以电力为原动力的拖动系统。在各产业中,电力拖动提供了90%以上的原动力,在生产流程中占据基础而重要的核心点位。EPRI(ElectricPowerResearchInstitute,美国电力研究协会)2011年的报告指出:全美电力拖动系统消耗了19%的总能源,57%的电力能源;制造业中电力拖动消耗了70%以上的电能;过程工业中电力拖动消耗的电能占90%以上。每年度成本核算中,附加消耗分布为停产损失93.6%,附加能量消耗3.1%,电力拖动寿命降低1.2%,常规消耗2.1%。状态检测新方法的提出,有益于进一步降低维护及衍射费用,提升生产效率。

1电力拖动系统设备检修体制衍射

1.1事后维修RM/BM

特点是:“任其损坏”Reactive(Break-Down)Maintenance。

优点体现在:不必投资在状态监测上,不会出现过度维修,适用于少数非重点设备。缺点为:无法预测事故停机,产生设备二次损坏及灾难性后果,生产损失,高额维修费用,管理失控。

1.2预防维修PM/TDM

要点在于“定期体检”PreventiveMaintenance。优点体现在维修以可控制的方式在方便的时间进行,减少意外事故,有效避免灾难性事故,可更好的控制备件,节约资金。缺点体现在状态良好的设备也被频繁检修(维修过盛),维修导致的损伤可能大于维修的益处,仍存在计划外故障停机,没有针对不同设备进行优化与寿命分析。

1.3预测维修PdM

预测维修即PredictiveMaintenance,要点在于“没有故障就不修”。优点在于:减少意外停机,仅在需要时购买和使用所需备件,只需在适当时候进行维修。缺点在于:监测仪器、系统、服务、人员花费,不能延长设备寿命。

1.4主动维修PAM

即ProactiveMaintenance,要点在于“查明根源,精确维修,一切基于可靠性”。优点在于:设备寿命延长,设备可靠性增加,更少的故障及二次损坏,停机时间减少,总维护费用降低。缺点在于:监测仪器、系统、服务、人员花费,要求特殊技能,需要更多时间进行分析,全体员工改变观念

2状态监测朝向

2.1当前状况分析

EPRI报告中指出:一个新的资产管理的平台提高生产能力,依靠运行在收支平衡之上,生产中断不可容忍,世界级的生产运营需要可靠性维护。对应的管理策略应为合理利用现有设备,增加生产速度提高质量,增加有效生产时间,降低成本。维修部门从单纯的维修,逐渐转变成为确保企业生产能力的高级职能单元,维修费用占企业生产总成本的4%到14%,维修费用所占比例大于企业利润率。故障停机异常昂贵,远远超过维修费用。

2.2状态监测的目的

保护系统(保障运行,避免事故造成二次损伤)——预知维修(提前预警,减少非计划停机事件)——故障诊断(指导维修进程,实施精密维修)——根源分析(有目的地提高设备可靠性)。

2.3案例分析

美国总统轮船公司2001年8月16日安装检修状态监控系统。2001年8月21日TC1轴承失效(已使用10,000小时)。在海上更换轴承,耽搁时间。二次损伤,造成叶片和迷宫密封损伤(价值$180,000)包括产量损失与人工费用。到达港口后,更换整个轴系,浪费时间。

同样在轮船公司的案例中,预测维修经济效益评估可知,VTR714轴承每套USD20,000to25,000;VTR714轴系每套USD120,000to150,000。已知更换轴承推荐时间为10,000小时(16个月),17条船,实行状态监测4年,轴承更换时间由10,000小时提高到20,000(有些轴承达到30,000小时)。总的价值体现为:17×3台涡轮增压器xUSD20,000=USD1,020,000,其中未计算节省时间与人工的效益及二次损伤费用

3RCM

RCM战略即StrategyforRCM,包括设计与改造、设备与备件采购、备品备件库存保养、安装调试、操作与日常保养、运行调度、维修维护。衍射流程为设备改造—提高运行寿命—状态监测日常维护保养—状态监测—有计划的停机—定期维修—备用策略—事后维修。

RCM手段(InstrumentforRCM)包括红外诊断静态/动态电气诊断、机械振动分析、激光对中/现场动平衡、润滑油品分析、超声诊断、腐蚀检测/探伤和实现静态检测、动态巡检、在线监控

RCM收益(BenefitfromRCM)主要有提高产量(2-40%),减少维修费用(7-60%),提高产品质量(重新回炉生产&废品率减少5-90%),延长设备寿命(>1-10xlifeextension),减少零配件库存(10-60%),增加库存周转率(upto75%),减少成品库存,降低能耗(5-15%),提升生产安全及环境保护。

4故障分布与测试

4.1故障分布

根据EPRI的报告:电力拖动故障的53%源于机械原因,如轴承故障、不平衡、松动等;47%源于电气原因;这其中,10%源于转子,如铸件缺陷导致的不平衡气隙、断条等;37%源于定子绕组。阻抗不平衡导致的电力拖动系统效率的降低。阻抗不平衡导致功率因数的降低。阻抗不平衡导致电力拖动损耗。阻抗不平衡导致温度上升。附加的温升导致电力拖动系统寿命的降低。

4.2电气测试

静态电气测试SET包括:欧姆表/毫欧表、绝缘电阻计(DA/PI)、

高压绝缘测试仪、LCR测试仪、浪涌测试仪、静态电路分析(MCA)。

动态电气测试DET包括:电压表、安培表、功率表、数据采集器、电源质量分析仪、动态效率仪。

其他还有动态电信号分析(ESA)、动态机械测试DMT、红外分析、振动分析、超声诊断。

5电力拖动监测与管理系统的建立

维修策略的优化通过监控点的系统建立得以实现预知维修与监测进程,需要以下为电力拖动状态监测的时间间隔,以月为单位。台湾麦寮电厂拥有7台600MW火力发电力拖动组2台,12MW柴油发电力拖动组(备用)。实现的技术服务有SPMIntroduction(1998)、CMS用于涡轮增压机(1998)、便携式仪器A30-3(1999)、诊断服务(2001)。现在装备4台A30-3,整体监控点数7600点,远程监控2100点,“VCM+BMS”56点,“MG4toAMStoPRO46”软件72点。下一步装备6台Leonova,远程监控1445点,“MG4toAMStoPRO46”136点。通过系统的故障检点监测成形,有效地实现了检修管理技术的提升。

6结束语

电力拖动系统中检修水平的提升,除了依托于设备管理人员的技术水平外,通过在线检测方法,以先进的检测检修管理技术可以实现更加优化的资源配置和生产效率。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
7、

略论电力拖动控制线路实训故障排除教学

电力拖动控制线路故障排除基础知识与实践技能操作是学习生产机械电气控制线路的基础。它涉及到的内容与学科较多,且实践性较强,无论是多么复杂的线路,都是由最基本的控制线路组合而成,学生只要掌握常见的基本控制路线,就能熟练的解决电力拖动控制线路所遇到的故障问题。

1电力拖动系统的概念

拖动是指用各种原动机带动生产或工作机械(负载)产生运动以完成一定的任务。电力拖动是指各种电动机作为原动机的拖动方式。

1.1电力拖动系统的构成

电力拖动系统有四个部分组成:电动机、电机控制装置、机械传动机构、工作机械等。

1.2电力拖动控制系统结构

电力拖动控制系统是由电机及负载、电力电子变化器、控制器、检测、反馈装置等结构组成。

1.3电力拖动自动控制的目标及本质

电力拖动自动控制系统(调速系统)控制的目标是速度,电动机速控制的本质是对其输出转矩的控制。

2分析电路的原理结构

想要让学生熟练地运用电路的原理结构去分析电路故障的原因,就必须让学生先学会判断电路故障的方法,把电气原理图与电路的工作原理琢磨透,同时,在给学生进行理论知识指导的时候鼓励学生踊跃提出问题并给出解答,只有打下扎实的理论基础才能让学生更好的掌握电路故障实训排除故障的技能。

2.1电路故障的分析方法

首先要求学生依据电路的工作原理去查看电路出现的故障现象,确定故障点的大概方位;然后再根据电路工作的原理去分析故障点所出现故障的原因有几个,是否是多个故障点所造成的电路故障;最后要求学生确定故障点及故障原因后进行排除故障,完成后让学生对这次故障点排除做好总结,从中找出故障点的原因。

2.2故障排除与技能训练

2.2.1电力拖动控制线路故障类型及现象

电力拖动控制线路的故障分为软故障、硬故障、间接性故障等三种类型。软故障是指除了电源、制动器、以及电动机出现问题以外,大部分故障原因出在了机械动作失灵、触头与压接线出现接触不良及脱落、电器元件没有适当调整等现象。硬故障是指导线、电动机以及电器元件出现明显的冒烟、发热发烫、有焦臭气味甚至局部冒火花等现象,造成这种故障的原因大部分是短路、接地、过载等击穿绝缘层烧坏或者导线所致。间接性故障是指局部元件老化或接触不良及脱落等现象造成的故障。

2.2.2故障技能训练

在做故障技能训练之前,老师必须给学生做好安全教育训话,首先指导学生在做故障技能训练时以自身安全为主,其次是指导学生熟练的掌握电力拖动控制线路的工作原理,然后给学生进行电力拖动控制线路排除故障示范,最后指导学生在老师的安排下进行电力拖动控制线路的故障技能训练,学生做完之后并对此次的电力拖动控制线路的故障技能训练进行分析总结。

2.2.3分析故障点范围的方法

分析故障点范围的方法是排除法,排除法是指在做电力拖动控制线路故障的技能训练时,要对故障原因进行排除分析,首先分析故障出现的方位,是电器的原因还是机械的原因,然后具体问题具体分析,分别查看故障点其中是电源出现问题还是线路出现问题,如果是线路出现问题,准确分析是主电还是控制线路出现问题,又是控制线路的哪个环节或者元件出现问题,最后对故障点进行修复。

2.2.4查找故障点的方法

查找故障点的方法有电压测量法、电阻测量法、短接法等三种。老师在指导学生进行电力拖动控制线路故障技能训练时一定要提高学生的学习兴趣。大部分学生在进行电力拖动控制线路故障训练时,没有掌握正确的查找故障点方法,盲目地使用各种仪器或者测量仪等没有章法的去检查故障,这样浪费了大量的时间,长此以往会使学生失去学习电力拖动控制线路的兴趣。由此可知,兴趣才是最好的老师,首先提高学生对学习电力拖动控制线路故障训练的实验兴趣,引导学生自主思考,根据所观察的熔断器内熔丝是否熔断、各连接螺钉是否松动、安装的线路与原理图是否一致、接触器铜片有没有脱落、线路有无短线等。

在指导学生进行电力拖动控制线路寻找故障点实验过程中,做到让每一个学生都参与实验,让每一个学生都动手实践,根据学生的实验过程了解学生对电力拖动控制线路故障排除技能训练的掌握程度以及遇到的问题进行详细解答,并且让学生再做一次故障排除技能训练,运用设置多种故障点的方法,人为的在线路上设置元件出现故障、线路出现故障,让学生对电力拖动控制线路故障排除技能训练做到熟能生巧的程度,为以后学习复杂的电力拖动控制线路故障排除技能奠定扎实的基础。

2.2.5对故障点出现的问题进行检测

在对学生进行电力拖动控制线路教学之前,首先要培养学生良好的思维习惯,这对学习电力拖动控制线路有很大的帮助。因为良好的思维方式有助于学生找到正确的学习方法,对学习电力拖动控制线路的故障排除技能训练有着事半功倍的效果。

首先,培养学生在学习电力拖动控制线路故障排除技能训练时要有目的的分析故障出现的原因,其次根据原因分析是电器元件还是电路出现故障,再次根据具体问题具体分析,然后判断故障点的大概范围,最后对故障点进行修复解决。这样环环相扣的思维方式,不但可以节约学生进行电力拖动控制线路故障排除训练技能的时间,还能进一步提高学生对电力拖动控制线路故障排除技能训练的兴趣,使学生对以后学习复杂的电力拖动控制线路故障排除技能训练时有目的的对故障点出现的问题进行测量。

在做电力拖动控制线路故障排除训练技能时,要对故障点出现的问题进行有序的检测,首先要检测机械的电源是否出现故障,其次检测电力拖动控制线路是否出现故障,再次检测元器设备是否出现故障,然后确定故障点的大概位置,最后依据电力拖动控制线路的工作原理与设备的动作顺序缩小故障点的范围找出故障点,分析故障出现的原因并正确处理好故障点所出现的问题。

2.2.6分析故障点出现的原因并修复电路

一旦确定了故障点的位置,就要对故障原因进行分析。分析其原因是否因使用时间过长导致电源开关已失灵;机械动作是否失灵;触头与压接线出现接触不良及脱落;电器元件是否适当调整;导线、电动机以及电器元件是否出现明显的冒烟与发热发烫;有焦臭气味甚至局部冒火花;局部元件老化或接触不良及脱落等。找出电路的各种故障原因后,对原因进行具体问题具体分析,然后对电路进行有序的修复,完成修复工作后对电力拖动控制线路进行运行操作,在操作的过程中一定要按照操作要求的顺序进行(这样可以避免再次出现故障),直到电力拖动控制线路能够正常运行为止,才算修复成功。

最后,要求学生对这次的学习《电力拖动控制线路实训故障排除》的教学实验进行总结,总结的内容包括对电力拖动系统概念的了解、电力拖动控制线路实训故障排除的技能训练、分析故障点出现的现象及原因、故障点排除的方法、故障点的修复工作等。

3结语

电力拖动控制线路实训故障排除是一种使学生把理论知识与技能训练相结合的教学方法,通过实际操作技能训练让学生熟练的掌握电力拖动控制系统故障排除的方法,达到提高学生的专业知识与专业技能训练的目的。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
8、

带压拖动用注入防喷装置的研制及应用

目前,水平井多层体积压裂施工工艺在各油田开始得到广泛使用,但根据常规的井口配套装置,如井口大四通、单闸板或双闸板液动防喷器以及环形防喷器组合难以满足要求。新的施工工艺要求解决以下几方面问题:

①由于采用体积压裂,注入井内的压裂液排量达到3.5m3/min左右,常规的井口大四通只有两个旁通口,注入时只能有一个注入口,通径太小,不适合大排量注入工作。②压裂完一层后,由于需要拖动管柱,而常规的闸板防喷器不适合带压拖动工作,所以现场通常是先放喷,等井内无压力时再拖动管柱。而放喷过程需要10余小时或者数天,严重影响施工进度,且放喷会造成地层压力严重损失,井下工具砂卡等事故。③常规配置的井口大四通、闸板防喷器、环形防喷器组合高度在2.4m左右,井口高度高,起下油管困难,安全风险高,操作不便。

因此,依据APIspec16A-2004《钻通设备规范》及SY/T6690-2008《井下作业井控技术规程》研制一种带压拖动用注入防喷装置,避免了每段施工后的放喷过程并将以上三个设备集合为一体。在保证压力级别和安装通用性的前提下,大大降低了井口装置的安装高度,为井口操作带来方便,极大地提高了分段压裂施工效率,保证了施工安全性。

1技术分析1.1结构设计为满足施工要求,带压拖动用注入防喷装置结构包括注入部分、闸板防喷器部分、补偿式多用途环形防喷器部分以及泄压平衡阀组部分,通过几部分上下连接法兰有机结合在一起,大大降低整体高度,见图1所示。其中,注入部分包括主体、下法兰、旁通过渡法兰;闸板防喷器部分包括闸板体、推动液缸等;环形防喷器部分包括上法兰、主体、主胶囊、油管专用自封衬套等。泄压平衡阀组部分包括阀体、阀芯、弹簧、手柄等。

注入部分有四个旁通口道,比常规井口大四通多了两个旁通口,这样大排量注入时,注入通道面积就可提高3倍,大大降低了液流阻力。

闸板防喷器可采用单闸板或双闸板形式。半封闸板可关闭油套环空,保证压裂时油套环空反复承受高压,也避免了压裂时顶部的环形防喷器承受不必要的高压。

环形防喷器采用了补偿式多用途环形防喷器结构,内部有一个能够承受高压的自封油管衬套,保证井口在任何时候处于密封状态,满足带压拖动管柱的需要,满足井口环保要求。

为确保油管接箍带压通过自封胶套,减轻接箍对自封胶套的损伤,在半封闸板的侧面安装有泄压平衡阀组,利用该阀组的泄压、平衡功能,使接箍在低压状态下通过自封胶套。

1.2主要技术参数公称通径:Φ179.4mm(7-1/16in)密封油管规格:2-7/8";3-1/2"油管衬套自封静压力:34.5(5000psi)油管衬套自封动压力:13.8MPa(2000psi)主体静水压强度压力:103.5MPa(15000psi)液控操作压力:8.4-10.5MPa(1200-1500psi)主通径法兰连接型式:6BXΦ179.4mm,69MPa主通径法兰密封垫环型号:BX156旁通径法兰连接型式:6BXΦ78mm,69MPa旁通径法兰密封垫环型号:BX154外型尺寸(长×宽×高):1520×555×1100mm(单闸板时)1520×555×1400mm(双闸板时)金属材料温度等级:T-20,-29℃~121℃适用工作介质:油、水、压裂液2工作原理压裂施工时,井口部分安装如图2所示。

2.1大排量压裂液的注入体积压裂时,压裂液最大排量可达到180-200m3/h左右,井口管线连接时,其中3个旁通孔接注入管线,1个旁通孔连接放喷管线,如图3所示,注入通道增大后,可保证大排量压裂液低阻进入井内。在注入压裂液时,关闭注入六通上部的半封闸板,确保闸板以上零件不受压裂液冲蚀。

2.2带压上提油管压裂停泵后,不再放喷待井内压力在12-15MPa时向上拖动油管,利用环形防喷器油管衬套自封功能密封井内压力,防止井口喷溅。上提管柱时,在油管接箍通过自封胶套时缓慢上提,减轻接箍倒角对胶套的损坏。上提油管至下一个压裂层。

2.3带压调整管柱在拖动油管时,不仅需要上提油管,有时需要增加油管短节调整井内工具位置,就需要下放油管。下放油管接箍进入补偿式多用途环形防喷器时,阻力较大,接箍倒角会严重损坏环封油管自封衬套内壁。所以施工过程中对接箍如何进入环封通过自封胶套就有特殊要求。这就需要利用泄压平衡阀组的功能,将油管接箍顺利倒入井内。具体操作步骤如下:

①下放油管使接箍进入防喷装置,使接箍上台阶与环形防喷器上平面平齐,然后关闭半封闸板,关闭平衡阀,打开泄压阀,泄除环形防喷器与闸板间压力。

②在环形防喷器和闸板层环腔无压力的情况下,继续下放油管,使接箍进入环形胶套。直到油管接箍坐落于闸板上面,关闭泄压阀,打开平衡阀。观察平衡阀组上压力表,应升至与闸板下方井压一致。

③用大钩略微上提油管,解除油管对闸板的压力,打开闸板,下放油管接箍入井。

④如此进行循环操作,将井口外的油管接箍顺利下放入井内,最终使工具达到合适位置。

3性能特点①结构先进、集三个功能部件为一体,大大降低了井口操作高度;②操作方便,可以实现压裂后不放喷,提高了多层压裂效率,节约了施工成本;③解决了油管带压下放困难的问题,延长了环形防喷器油管专用自封衬套使用寿命;④油管专用衬套拆装、更换方便。

4现场应用带压拖动用注入防喷装置在室内验证试验的基础上,在长庆油田区域多个作业区进行了现场试验和应用,截止2014年11月累计作业5口井次。现场施工顺利,井内压力15MPa内油管管柱能够顺利起下,施工成功率达到了100%。该装置可以完全满足水平井多层压裂作业带压拖动管柱工艺技术要求,大大提高多层压裂效率,节约了施工成本,具有很好的推广应用前景。①开关迅速灵活,操作安全可靠。②避免了每段施工后的放喷过程,每层压裂节约施工工时5-15小时左右,多层压裂作业施工速度相对老工艺提高不少。③降低了井口操作高度,方便现场施工操作。④延长了衬套胶芯寿命,减轻了现场操作的工作量。

5结论①带压拖动用注入防喷装置的设计、制造、试验和检验全过程均按照APIspec16A-2004《钻通设备规范》的标准要求完成。②带压拖动用注入防喷装置实现了多层压裂作业中15MPa井内压力下带压拖动管柱工艺,大大提高了现场施工的速度,节约了作业成本。③该装置结构先进、设计合理,降低了井口操作高度,安装、使用维修方便。④该装置解决了油管带压下放困难的问题,提高了环形防喷器衬套使用寿命。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
9、

微特电机的误差测试分析

当今社会文明最基本的支撑技术中有一项就是电机技术的发展和广泛应用,电机的使用改变了我国传统的生产和生活方式。而微特电机是电机技术领域最先进、最活跃、最具有潜力的一个分枝。在我国已经渐渐发展成为一个相对比较完善、独立的产业体系和技术体系,并且拥有自己的一套技术考核标准,成为应用较为广泛的一个电机门类。

微特电机在人们的生产生活中使用较为广泛,为人们带来方便的同时也存在一些问题,需要对微特电机的测试误差加以控制。微特电机的测试误差是测量过程中无法避免的,测量技术中检测仪器的测量误差和误差的记录方法一直是备受大家关注的话题。

一、微特电机的发展方向

微特电机的发展方向大致分为六个方面,第一,机电一体化的发展趋势,此阶段的特点是借助数字化的传感器、集成化的电路等技术实现电机系统的机电一体化。第二,高智能化的发展趋势,对电机的转矩、运行速度等进行了控制。第三,小型化和微型化发展趋势,追求低噪音,电机小巧的特点。第四,永磁无刷化的发展趋势。第五,直接驱动的发展趋势,要求高速大功率。第六,大功率集成化的发展趋势,追求电机驱动单元的网络集成化。

二、交流异步感应电机转速测量

电网频率的大小直接影响着交流电机的同步转速,电网频率低,交流电机的同步转速就慢;电网频率高,交流电机的转速就快,电机的实际转速随着电网频率的高低变化而发生变化,电网频率的不稳定导致交流电机转速出现不稳定。为了加强对交流电机转速的控制,有了相对转速和绝对转速的区分。相对转速是交流电机在50Hz电源频率标准下的转速;绝对转速则是电机运行标准中一分钟的实际转速。电动机的相对转速和绝对转速随着电网的频率高低呈现出两条不同的波浪线,当电网的实际频率大于50Hz的标准时,相对转速高于绝对转速;当电网的实际频率正好是标准的50Hz时,相对转速与绝对转速相同;当电网的实际频率小于50Hz的标准时,相对转速低于绝对转速。

交流电机的测试工作需要注意一些问题,当交流电机的测试工作涉及到转速是判断电机是否合格的临界点时,需要采用相对转速作为评价的标准,就是通过电网频率的分布得到电机自动伸缩闸门的时间。电网频率最高时,电机的转速也最快,闸门自由伸缩的时间最短,测量的结果是相对于标准50Hz的转速;电网频率最低时,电机的转速最慢,闸门自由伸缩的时间最长,测量的结果同样是相对于标准50Hz的转速,通过这种方法补偿电源频率不稳导致的误差,对电机的转速做出正确的评价。如果闪光测速仪中配备了50Hz相对转速测试的功能,交流异步电机的转速测试最好采用相对转速的测试档,以此避免因电网频率变化造成电机测试误差;如果没有具备相对转速测试档,需要对电网的频率进行鉴别。

三、多级旋转变压器电气误差测量中相对误差与绝对误差

相对误差是用户使用的标准指南,反映了“基准电气零位”误差偏离实际值的大小,使用者通过产品的相对误差值就可以知道使用过程中产生误差的大小。相对误差是对产品提出的更高生产要求,即使相对误差是绝对误差的两倍甚至是极端值,只要绝对误差很小,生产出来的产品就是合格的。相对误差符合电机的实际使用情况,所以现行的多级旋转变压器电气误差测量中普遍采用相对误差的表示方法。传统的电气误差标准只在乎生产制造,忽视了用户的使用环节,因此现行的误差标准针对传统标准的弊端做出了修改。相对误差标准对产品的生产规格和测试环节都提出了更加严格的要求。相对误差把“基准电气零位”作为参考点,真实、准确的反映电机的误差,误差的测试环节具有重复性。绝对误差可以选择“基准电气零位”作为测试的参考点,也可以选择其他的“电气零点”为参考点,两者测量出的绝对误差值都是固定不变的。因为相对误差选择“基准电气零位”作为误差测试的参考点,具有一定的局限性,无法精确地评点电机合格与否。

四、步进电动机的步距误差测量采用绝对误差

步进电动机步距误差分为累积误差和分步距误差。累计误差是指根据步进电动机起始位置的相对值、每一步转的实际角度与理论值的差,选取这一周转动中最大正值和最大负值的绝对值之和记为步进电动机步距误差测量中的累积误差。分步距误差是步进电动机每一步实际歩距和理论歩距之间的差,通常选取一周中步距误差绝对值中最大的数值作为实际的分步距误差。累计误差的测试点是随机选取的,因此累积误差不能采用相对误差进行表示,不同测试点产生的误差数值不同,误差的测试工作不具有重复性。绝对误差测试中无论测试的参考点是什么,都不影响误差值的变化,符合了步进电动机误差测试参考点随机性的特点。分歩距误差实际上是相对误差,测量得到的误差数值大小一样,只是测量误差选择的起点不同,每个起点中表示误差的符号不同。

五、微特电机误差和仪器仪表误差的不同之处

微特电机测量的绝对值中没有理论上的真值,只是有类似于真值的数值。例如步进电动机误差测量的歩距角和位置角,都只是理论上的角度,绝对误差就是测量时电机实际的旋转角度和理论角度的差。还有一种绝对误差测试中只有实际值没有理论数值,例如多级旋转变压器电气误差测试中测量得到的电气角度影响着正切函数电桥绕制的准确率。仪器仪表的绝对误差是测量值与真值的差,具有正负数的区分。真值需要借助高一级的测量工具得到,在没有利用低一级测量工具得到的测量数值时,此数值也只能是实际值,不可以称为真值。

仪器仪表误差的表示方式和电机产品的误差表示方式基本一样,但是由于电机产品误差测量具有一定的特殊性,误差的表示方法也存在一些不同。例如相对误差的表示方法,仪器仪表采用百分比的表示方法。虽然电机中旋转变压器的余弦函数采用百分比的表示方法,但在实际的操作过程中为使用的方便通常用各点的角度误差代替百分比的误差表示方法。多级旋转变压器电气误差的测量不能选用百分比的表示方法。多级旋转变压器电气误差是以“基准电气零位”为标准的电机实际旋转的角度和理论电气角度的差,并且即使随着转角的角度不断增大,误差数值的大小基本不变,误差数值之间不存在任何比例关系,因此多级旋转变压器电气误差用“基准电气零位”的最大正负值表示误差,不采用百分比的表示方法。

六、结语

伴随着科技的进步、经济的飞速发展和社会文明的不断进步,微特电机凭借它自身高效率、高节能和机电一体化的特点会迎来一片快速发展的新天地。虽然我国微特电机使用范围广泛,但是微特电机的产业结构布局还不完善,微特电机的技术水平发展还比较落后。我国必须加大微特电机技术研发方面的资金投入,提升微特电机在市场竞争中的核心力,使我国微特电机的发展迈向一个新的高度。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


>>详情点击
友情链接友情链接