工业伺服节能改造,关于金鹰伺服节能注塑机信息聚合页,专注于金鹰伺服节能注塑机:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能

注塑机伺服节能改造

  注塑机工作原理  原定量泵(多为叶片泵)+ 异步(鼠笼式)电机的运行中,马达高速恒定持续运转,使油泵100%输出,当动作的速度越慢、动作的 时间越长、压力越大,潜在节能的幅度

6342018-06-28 09:34:30

查看详情

为什么注塑机伺服节能改造要比其他节能方式节电率要高?

为什么注塑机伺服节能改造要比其他节能方式节电率要高?注塑机节能改造的方法有很多,其中主流方式为:将原系统改造为伺服控制系统。为什么伺服控制系统要比其

1952018-08-15 17:00:09

查看详情

液压站伺服节能改造

液压站伺服节能改造 液压站工作原理电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后

1762018-06-28 09:31:14

查看详情

变频器+异步电机与伺服驱动器+同步电机的性能有什么区别?

  变频器+异步电机与伺服驱动器+同步电机的性能区别?  变频器:只接收与发出指令,控制对象只跟随变频器指令工作,但是被控制对象实际工作状况变频器是不知道的。  异步电

1472018-07-31 16:01:19

查看详情

同步伺服控制系统

  同步伺服控制系统  同步伺服控制系统主要分为三大部件:伺服驱动系统、永磁同步电机、伺服齿轮泵。  伺服驱动系统特点:  采用CANBUS通讯可靠性高,响应速度快,实时性强

1412019-02-12 10:15:35

查看详情

油压机伺服节能改造

  油压机伺服节能改造  油压机工作原理  电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、

1362018-06-25 16:26:02

查看详情

注塑机料筒节能改造

  注塑机料筒节能改造  注塑机料筒节能通过注塑机干燥机高效节能系统进行节能。  该干燥机高效节能系统是将干燥机排出的热风,经高效节能转换系统,吸收热量排出湿气粉尘

1242018-06-29 16:22:33

查看详情

注塑机节能改造方案

某磨具企业,注塑机节能改造方案

1122018-06-25 13:43:47

查看详情

注塑机伺服节能改造的原理大揭秘

  注塑机伺服节能改造的原理大揭秘   注塑机通过徕卡节能设备产品改造之后,正常节电率在:30%-80%  那注塑机节能改造,其改造原理是什么?  注塑机节能改造后的设备,系统

962018-06-26 14:49:16

查看详情

注塑机如何实现30%~80%节电率的节能改造

注塑机做节能改造,首选推荐“伺服控制系统”的节能改造。 注塑机,典型的周期性动作、变动负荷的生产设备。其一套完成的生产周期为“锁模、射胶、溶

922018-08-21 14:28:55

查看详情

缢生电缆塑料(昆山)有限公司-注塑机伺服改造

  公司名称:缢生电缆塑料(昆山)有限公司  项目名称: 注塑机伺服改造  合作模式:购销合同  项目内容: 镒生电线塑胶(昆山)有限公司是台湾在昆山投资的独资企业,以生产

892018-07-05 11:21:27

查看详情

注塑机做变频器改造,能省电么?与伺服系统相比有多大空间?

注塑机伺服节能改造相比变频器节能有哪些优势:1)控制精度 :交流伺服电机的控制精度由伺服同步电机轴后端的旋转编码器保证。2)低频特性:交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。

812018-07-27 15:43:05

查看详情

注塑机节能改造,一般都在哪些部位做节能改造

  注塑机节能改造,一般都在哪些部位做节能改造?   现在主流做注塑机节能改造的,一般改的部位在:电机、油泵、干燥机,加热部位的加热圈节能。   注塑机动力部位伺服节能

722018-08-03 14:33:41

查看详情

油压|液压节能改造:伺服系统与变量泵有哪些区别?

  油压|液压节能改造:伺服系统与变量泵有哪些区别?   首先,油压|液压设备节能改造的推行,伺服系统比变量泵节能这是毋容置疑的。伺服控制系统节电率一般在30%~80%。(是什

682018-08-01 15:03:58

查看详情

企业推进注塑机伺服节能改造,想知道注塑机在什么工作阶段最省电节能?

  企业推进注塑机伺服节能改造,想知道注塑机在什么工作阶段最省电节能?   一般注塑机在注塑成型“保压”以及产品“冷却”的过程中,异步电机都是在

662018-08-09 17:01:30

查看详情

注塑机伺服节能改造为什么会节能省电?

一般我们常见的注塑机的提供动力组成由电机和油泵组成,电机驱动油泵输出恒定流量。  注塑机一开机,电机和油泵就会一直处于满负荷运转工作。  经过伺服节能改造之后的注塑

652018-09-26 08:38:54

查看详情

注塑机做节能改造,一般都用什么节能方案?

  注塑机做节能改造,一般都用什么节能方案?  一、注塑机节能改造,目前主流的节能改造方式是:  1、液压动力系统进行伺服系统节能改造。  2、干燥筒的节能改造,余热回收

642018-08-03 14:07:08

查看详情

什么是液压系统的伺服节能改造?

  什么是液压系统的伺服节能改造?  液压系统  液压系统指的是通过改变液压油的压强大小来传递动力,推动终端设备动作的系统。  一套完整的液压系统大致由五个部分组

642019-01-15 16:46:29

查看详情

铝型材挤压机伺服节能改造

铝型材挤压机工作原理开始挤压前,将挤压筒、挤压模具、铝棒先进行加热,达到工艺温度时由控温仪自动控制,使其保持恒温。挤压时,装上规格模具后合上中动板,使模具端面与挤压筒面锁

552018-06-28 09:46:07

查看详情

注塑机伺服节能改造,其原理是什么?

注塑机伺服节能改造,其原理是什么?注塑机伺服节能改造,简单来说是:将原异步电机更换为永磁同步电机|伺服电机(液冷、强制风冷),将原油泵更换为伺服油泵,还需要一台伺服

532018-07-27 15:44:20

查看详情

伺服节能改造方案内为何配置的伺服同步电机要比原有的异步电机功率不一样

  伺服节能改造方案内为何配置的伺服同步电机要比原有的异步电机功率不一样?  伺服同步电机与异步电机工作方式不同,伺服同步电机的功率是随着负载的变化而变化的,普通电

512018-07-31 16:55:28

查看详情

协信精密模具(昆山)有限公司- 注塑机节能改造

  公司名称: 协信精密模具(昆山)有限公司  项目名称: 注塑机节能改造,  项目内容: 协信精密模具(昆山)有限公司,徕卡电气”对该公司现场进行勘查,对其用电设备进行

492018-07-05 11:23:23

查看详情

压铸机伺服节能改造

  压铸机工作原理  机器合型后,用人工或机械装置将金属液从保温炉中勺取出再浇注到压射室中,然后进行压铸。因此,工作循环周期较长,生产效率较低。但由于压射室与金属液接触

482018-06-28 09:33:25

查看详情

节能改造项目产品之:液压伺服控制系统适用设备简析

  徕卡节能改造项目产品之:液压伺服控制系统  液压伺服控制系统主要适用行业及设备:  1、冶金业  设备举例:  液压站  2、注塑机  3、铝型材  设备举例:  挤

482018-06-26 09:31:05

查看详情

伺服节能改造后,除了节约电能,还有没有其他好处?

  伺服节能改造后,除了节约电能,还有没有其他好处?  工业工厂推行伺服节能改造后,其实除了电能的节约,对于设备也是有利的。  下面我们以注塑机为例讲解一下。  前面的

482018-08-09 16:19:00

查看详情

注塑机节能节电都有哪些方法?如何降低注塑机用电量?

注塑机节能节电都有哪些方法?如何降低注塑机用电量?针对未经节能改造以液压油压为动力的注塑机,从目前技术来看,注塑机节能改造方法主要有以下几个方面:1、注塑机伺服系统节能

472018-07-24 09:21:26

查看详情

伺服节能改造:油压机的工作原理简要介绍

  油压机的工作原理简要介绍  油压机的动力源与注塑机(全电除外)、锻压机、压铸机、液压站的动力源类似,都是液压泵的液压系统,他们是依靠泵的作用力使液压油通过液压管路

472018-10-10 11:12:10

查看详情

注塑机中的保压有什么作用?

  注塑机中的保压有什么作用?  一、保压的作用是当其熔融冷却/固化收缩时,保持一个压力,继续注入熔融来填补收缩的空间,减少或避免凹痕的产生。  保压段的设定压力不

462018-09-18 10:52:31

查看详情

注塑机未节能改造其主要电能消耗在哪几个部分?

注塑机未节能改造其主要电能消耗在哪几个部分? 1、液压系统油泵的电能消耗 2、加热器的电能消耗 3、循环冷却水泵的电能消耗(在注塑车间内,一般多台注塑机共用一台冷却水泵),其中

442018-06-26 14:36:19

查看详情

直流伺服电机与交流伺服电机的对比【转载】

  伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象

362018-10-10 11:25:53

查看详情
节能改造关注问答
1、

电机常用的调速方法有哪些?

因为拖动负载的功率使用角速度与转矩的乘积标识的,所以改变电动机的角速度自然能够改变功率。所有调节电动机的转速可以收到很好的节能效果。调速方法有很多,常用的调速方法有以下几种:

1.变机调速:变极调速是通过改变定子绕组接线方式来改变电动机极数,从而实现顶动机转速的变化。变极调速时,应同时对调定子两相接线,这样才能保证调速后电动机的转向不变。变极调速的控制结构简单、价廉、可靠性高,效率良好。其最大缺点是有级调速。

2.变频调速。变频调速就是用变频器同时控制电动机的定子电压和频率来改变同步转速的一种调速方法。总的说来,变频调速范围大,课实现武技调速,效果好,但变频装置比较复杂,投资大。变频调速是现代交流调速极数的主要方向,它课实现无级调速,适用于恒转矩和恒功率负载。

3.定子调压调速:定子调压调速是通过改变定子端电压,从而使异步电动机的机械特性发生变化,在一定负载转矩下,电动机转速将随着端电压的变化而变化。这种接线方式各相电流平衡且对称,作为驱动电动机来说是最接近于正弦波的驱动。调压调速属于低效调速方式,但对风机、水泵类负荷,特别是当流量小时,节能效率和功率因数均有所提高。调压调速的特点是线路简单、可靠、价格低、维护方便。

4.转子串电阻调速。

5.串级调速分为机械串级调速和晶闸管串级调速。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

浅析永磁电机的五大节能原理

一异步电机(感应电机)的工作原理是通过定子的旋转磁场在转子中产生感应电流,产生电磁转矩,转子中并不直接产生磁场。因此,转子的转速一定是小于同步速的(没有这个差值,即转差率,就没有转子感应电流),也因此叫做异步电机。而智能工业电机转子本身产生固定方向的磁场(用永磁铁或直流电流),定子旋转磁场“拖着”转子磁场(转子)转动,因此转子的转速一定等于同步速,也因此叫做同步电机。智能工业电机的转速n始终为n=60f/p不变,式中f为设定频率,p为电机极对数。

由于不需要从电网吸收无功电流,转子上既无铜耗又无铁耗,所以同步电机在很宽的负载范围内能保持接近于1的功率因数,机器效率比同容量的异步电动机提高8%左右,力能指标(ηXcosΦ)提高18%左右。

二智能工业电机的功率密度比同容量的异步电动机提高25%左右。同样功率的电动机,智能工业电机要比异步电动机小2个机座号,体积小意味着铁损小,以及机械损耗小。

三智能工业电机比同功率的异步电动机效率高,同时高效区宽,智能工业电机的转速范围在25%-990%额定转速时,效率达到95%-97%,而异步电动机的转速范围在70%-99%额定转速时,效率只有88%,当转速低于70%额定转速时,效率会急剧下降。

四智能工业电机和异步电机在不同转速情况下的转矩比较

五异步电机起动时,电流是额定电流的6-7倍,对电动机寿命不利,为了达到需要的扭矩,甚至还有加大电机型号,而电机运行时处于低负荷工作,效率降低。而智能工业电机启动时,电流是逐渐增加的,不会超过额定电流,扭矩也能达到额定扭矩,没有电流冲击,延长了使用寿命,电机处于合理的负荷工作。节能原理说明六永磁同步电动机转速控制精准。在转速要求高的场合有更大的优势。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

电动机直接启动严重影响电动机的绝缘性能和使用寿命


风机运行中实际风量仅为额定风量的一部分,风机远离额定工作点运行,其实际运行效率很低,能耗浪费问题严重。由于挡板的存在,挡板前后存在压差,消耗了很大一部分能量,同时加大了对管道和风机的磨损。采用人工方式来调节挡板,操作麻烦,实时性差。电动机直接启动,启动电流为额定电流的6~8倍,严重影响电动机的绝缘性能和使用寿命,并会对电网造成较大冲击。电动机运行功率因数最高为0.8,功率因数低,无功损耗大。

技术改造节能原理项目通过技术改造,新增高、低压变频器系统,以调节电动机运行频率(转速)的方式替代了原有的调节风门的运行方式,从而起到节省电能、提高功率因数、改善运行工艺的作用。从风机的运行曲线图来分析采用变频调速后的节能效果。

项目技术改造方案通过新增的高压变频器系统与低压变频器系统,使风机可以在变频运行状态和工频运行状态间进行切换,即使在变频器发生故障时也不会影响风机的运行,保证不因增加高压变频器系统与低压变频器系统而降低原有系统的整体可靠性,同时在变频运行时,调节电动机转速,达到节能效果。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


4、

三相交流异步电动机故障处理方法

三相交流异步电动机是工农业生产中最常见的电气设备,其作用是把电能转换为机械能。其中用得最多的是鼠笼型异步电动机,其结构简单,起步方便,体积较小,工作可靠,坚固耐用,便于维护和检修。为了保证异步电动机的安全运行,电气工作人员必须掌握有关异步电动机的安全运行的基本知识,了解对异步电动机的安全评估,做到尽可能地及时发现和消除电动机的事故隐患,保证电动机安全运行。


电动机在运行中由于种种原因,会出现故障,故障分机械与电气两方面

一、械方面有扫膛、振动、轴承过热、损坏等故障。

1、异步电动机定、转子之间气隙很小,容易导致定、转子之间相碰。一般由于轴承严重超差及端盖内孔磨损或端盖止口与机座止口磨损变形,使机座、端盖、转子三者不同轴心引起扫膛。如发现对轴承应及时更换,对端盖进行更换或刷镀处理。

2、振动应先区分是电动机本身引起的,还是传动装置不良所造成的,或者是机械负载端传递过来的,而后针对具体情况进行排除。属于电动机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良,转轴弯曲,或端盖、机座、转子不同轴心,或者电动机安装地基不平,安装不到位,紧固件松动造成的。振动会产生噪声,还会产生额外负荷。

3、如果轴承工作不正常,可凭经验用听觉及温度来判断。用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠扎碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,因为电动机要每运行3000-5000小时左右需换一次润滑脂。例如在球磨机电机其型号是JR138--8-245KW,由于运转一年多后,轴承发出不正常的声音,用听棒接触轴承盒,听到了“咝咝”的声响,同时还有微小“哒哒”的冲击声,对其进行检修,打开发现轴承盒内缺油,同时轴承滚柱有的以有细微的麻痕。这样对轴承进行了更换,添加润滑油脂。在添润滑脂时不易太多,如果太多会使轴承旋转部分和润滑脂之间产生很大的磨擦而发热,一般轴承盒内所放润滑脂约为全溶积二分之一到三分之二即可。在轴承安装时如果不正确,配合公差太紧或太松,也都会引起轴承发热。在卧式电动机中装配良好的轴承只受径向应力,如果配合过盈过大,装配后会使轴承间隙过小,有时接近于零,用手转动不灵活,这样运行中就会发热。

二、电气方面有电压不正常绕组接地绕组短路绕组断路缺相运行等。

1、电源电压偏高,激磁电流增大,电动机会过分发热,过分的高电压会危机电动机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大造成电动机过载而发热,长时间会影响电动机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电动机发热,同时转距减小会发出“翁嗡”声,时间长会损坏绕组。总之无论电压过高过低或三相电压不对称都会使电流增加,电动机发热而损坏电动机。所以按照国家标准电动机电源电压在额定值±5%内变化,电动机输出功率保持额定值。电动机电源电压不允许超过额定值的±10%,;三相电源电压之间的差值不应大于额定值的±5%。

2、电动机绕组绝缘受到损坏,及绕组的导体和铁心、机壳之间相碰即为绕组接地。这时会造成该相绕组电流过大,局部受热,严重时会烧毁绕组。出现绕组接地多数是电动机受潮引起,有的是在环境恶劣时金属物或有害粉末进入电动机绕组内部造成。电动机出现绕组接地后,除了绝缘已老化、枯焦、发脆外都可以局部处理,绕组接地一般发生在绕组伸出槽外的交接处(绕组端部),这时可在故障处用天然云母片或绝缘纸插入铁心和绕组之间,在用绝缘带包扎好涂上绝缘漆烘干即可,如果接地点在铁心槽内时,如果上成边绝缘损坏,可以打出槽楔修补槽衬或抬出上成线匝进行处理,若故障在槽底或者多处绝缘受损,最好办法就是更换绕组。

3、绕组中相邻两条导线之间的绝缘损坏后,使两导体相碰,就称为绕组短路。发生在同一绕组中的绕组短路称为匝间短路。发生在两相绕组之间的绕组短路称为相间短路。不论是那一种,都会引起某一相或两相电流增加,引起局部发热,使绝缘老化损坏电动机。出现绕组短路时,短路点在槽外修理并不难。当发生在槽内,如果线圈损坏不严重,可将该槽线圈边加热软化后翻出受损部分,换上新的槽绝缘,将线圈受损的部位用薄的绝缘带包好并涂上绝缘漆进行烘干,用万用表检查,证明已修好后,再重新嵌入槽内,进行绝缘处理后就可继续使用,如果线圈受损伤的部位过多,或者包上新绝缘后的线圈边无法嵌入时,只好更换新的绕组。

4、绕组断路是指电动机的定子或转子绕组碰断或烧断造成的故障。定子绕组断部,各绕组元件的接头处及引出线附近。这些部位都露在电动机座壳外面导线容易碰断,接头处也会因焊接不实长期使用后松脱,发现后重新接好,包好并涂上绝缘漆后就可使用。例如电机其型号是Y132M-47.5KW在工作中突然发出声响后停车,经检查后发现绕组一相断路。打开电动机瓦盖后,发现电动机壳外导线与绕组连接处断开,其原因就是焊接不实,长期使用后松脱。打开捆绳,处理后重新焊接,包好涂上绝缘漆后继续使用。如果因故障造成的绕组被烧断则需要更换绕组。如转子绕组发生断路时,可根据电动机转动情况判断。一般表现为转速变慢,转动无力,定子三相电流增大和有“嗡嗡”的现象,有时不能起动。出现转子绕组断路时,要抽出转子先查出断路的部位,一般是滑环和转子线圈的交接处开焊断裂所引起,重新焊接后就可使用。如果是线圈内部一般使用断条侦察器等专用设备来确定断路部位。例如:电动机型号JZR212-63.5KW在开车时,突然发现小车无力,并且伴有翁翁的响声。经检查发现转子一相断路。打开抽出转子看到滑环和转子线圈交接处开焊,把接头处用纱布处理干净,重新用电烙铁焊接,焊接后又可继续使用。

5、三相异部电动机在运行过程中,断一根火线或断一相绕组就会形成缺相运行(俗称单相),如果轴上负载没有改变,则电动机处于严重过载状态,定子电流将达到额定值的二倍甚至更高,时间稍长电动机就会烧毁。在各行业中,因缺相运行而烧毁的电动机所占比重最大。一般电动机缺相是由于某相熔断器的熔体接触不良,或熔丝拧的过紧而几乎压断,或熔体电流选择过小,这样通过的电流稍大就会熔断,尤其是在电动机起动电流的冲击下,更容易发生熔体非故障性熔断。有时电动机负荷线路断线,一般是安装不当引起的断线,特别是单芯导线放线时产生的小圈扭结,接头受损等都可能使导线在运行过程中发生断线。由于电动机长期使用使绕组的内部接头或引线松脱或局部过热把绕组烧断电动机出现缺相运行时。总之,不管是什么样的缺相,只要能及时发现,对电动机不会造成大的危害。为了预防电动机出现缺相运行,除了正确选用和安装低压电器外,还应严格执行有关规范,敷设馈电线路,同时加强定期检查和维护。

6、电动机的接地装置。电动机接地是一个重要环节,可是有的单位往往忽视了这一点,因为电动机不明显接地也可以运转,但这给生产及人身安全埋下了不安全隐患。因为绝缘一旦损坏后外壳会产生危险的对地电压,这样直接威胁人身安全及设备的稳定性。所以电动机一定要有安全接地。所谓的电动机接地就是将电气设备在正常情况下不带电的某一金属部分通过接地装置与大地做电气连接,而电动机的接地就是金属外壳接地。这样即使设备发生接地和碰壳短路时电流也会通过接地向大地做半球形扩散,电流在向大地中流散时形成了电压降,这样保证了设备及人身安全。

三、结束语

综上所述,为了能采用正确的方法进行电动机的故障修理,就必须熟悉电动机常见故障的特点及原因,才能少走弯路,节省时间,尽快地将故障排除,恢复电动机故障,使电动机处于正常的运转状态。做好电动机的定期检查和维护工作,也是保证电动机安全运行,延长寿命的有效措施之一。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

三相异步电动机的基本结构

电动机(Motors)是把电能转换成机械能的设备,它是利用通电线圈在磁场中受力转动的现象制成,分布于各个用户处,电动机按使用电源不同分为直流电动机和交流电动机,电力系统中的电动机大部分是交流电机,可以是同步电机或者是异步电机(电机定子磁场转速与转子旋转转速不保持同步速)。电动机主要由定子与转子组成。通电导线在磁场中受力运动的方向跟电流方向和磁感线(磁场方向)方向有关。电动机工作原理是磁场对电流受力的作用,使电动机转动。

(一)定子(静止部分)

1、定子铁心

作用:电机磁路的一部分,并在其上放置定子绕组。

构造:定子铁心一般由0.35~0.5毫米厚表面具有绝缘层的硅钢片冲制、叠压而成,在铁心的内圆冲有均匀分布的槽,用以嵌放定子绕组。

定子铁心槽型有以下几种:

半闭口型槽:电动机的效率和功率因数较高,但绕组嵌线和绝缘都较困难。一般用于小型低压电机中。

半开口型槽:可嵌放成型绕组,一般用于大型、中型低压电机。所谓成型绕组即绕组可事先经过绝缘处理后再放入槽内。

开口型槽:用以嵌放成型绕组,绝缘方法方便,主要用在高压电机中。

2、定子绕组

作用:是电动机的电路部分,通入三相交流电,产生旋转磁场。

构造:由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。

定子绕组的主要绝缘项目有以下三种:(保证绕组的各导电部分与铁心间的可靠绝缘以及绕组本身间的可靠绝缘)。

(1)对地绝缘:定子绕组整体与定子铁心间的绝缘。

(2)相间绝缘:各相定子绕组间的绝缘。

(3)匝间绝缘:每相定子绕组各线匝间的绝缘。

电动机接线盒内的接线:

电动机接线盒内都有一块接线板,三相绕组的六个线头排成上下两排,并规定上排三个接线桩自左至右排列的编号为1(U1)、2(V1)、3(W1),下排三个接线桩自左至右排列的编号为6(W2)、4(U2)、5(V2),.将三相绕组接成星形接法或三角形接法。凡制造和维修时均应按这个序号排列。

3、机座

作用:固定定子铁心与前后端盖以支撑转子,并起防护、散热等作用。

构造:机座通常为铸铁件,大型异步电动机机座一般用钢板焊成,微型电动机的机座采用铸铝件。封闭式电机的机座外面有散热筋以增加散热面积,防护式电机的机座两端端盖开有通风孔,使电动机内外的空气可直接对流,以利于散热。

(二)转子(旋转部分)

1、三相异步电动机的转子铁心:

作用:作为电机磁路的一部分以及在铁心槽内放置转子绕组。

构造:所用材料与定子一样,由0.5毫米厚的硅钢片冲制、叠压而成,硅钢片外圆冲有均匀分布的孔,用来安置转子绕组。通常用定子铁心冲落后的硅钢片内圆来冲制转子铁心。一般小型异步电动机的转子铁心直接压装在转轴上,大、中型异步电动机(转子直径在300~400毫米以上)的转子铁心则借助与转子支架压在转轴上。

2、三相异步电动机的转子绕组

作用:切割定子旋转磁场产生感应电动势及电流,并形成电磁转矩而使电动机旋转。

构造:分为鼠笼式转子和绕线式转子。

(1)鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的端环组成。若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组。小型笼型电动机采用铸铝转子绕组,对于100KW以上的电动机采用铜条和铜端环焊接而成。鼠笼转子分为:阻抗型转子、单鼠笼型转子、双鼠笼型转子、深槽式转子几种,起动转矩等特性各有不同。

(2)绕线式转子:绕线转子绕组与定子绕组相似,也是一个对称的三相绕组,一般接成星形,三个出线头接到转轴的三个集流环上,再通过电刷与外电路联接。

特点:结构较复杂,故绕线式电动机的应用不如鼠笼式电动机广泛。但通过集流环和电刷在转子绕组回路中串入附加电阻等元件,用以改善异步电动机的起、制动性能及调速性能,故在要求一定范围内进行平滑调速的设备,如吊车、电梯、空气压缩机等上面采用。

(三)三相异步电动机的其它附件

1、端盖:支撑作用。

2、轴承:连接转动部分与不动部分。

3、轴承端盖:保护轴承。

4、风扇:冷却电动机。

三相异步电动机型号字母表示的含义:

J——异步电动机;O——封闭;L——铝线缠组;

W——户外;Z——冶金起重;Q——高起动转轮;

D——多速;B——防爆;R一绕线式;

S——双鼠笼;K一—高速;H——高转差率。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

煤矿电机拖动系统变频节能系统研究

随着电力电子技术、计算机技术、电力通信技术等的进一步发展,变频调速节能技术得到迅速发展且在工程实际应用中发挥了良好的应用效果。高性能的变频调速节能装置设备已被大量地引入到煤矿、钢厂、电厂等工业领域。通过大量研究和实践工作可知,交流电机采用变频调速技术升级改造后其通常可以获得30%~65%的节电效益。在煤矿开采过程中,随着井下开采和掘进的不断延伸,矿井巷道也变得越来越长,为了满足井下通风需求,需要增加通风风机的功率容量,这样大功率的电机直接起动对煤矿配电网冲击非常大,加上井下作业面需求风量波动较大,采用常规继电器直接控制方式会导致大量电能资源浪费。目前,大功率交流电机采用变频调速技术进行升级改造,已成为当代电机节能调速控制的潮流,其节能节电效果十分明显,加上科学技术的进一步发展,大功率、高电压变频器的制造成本也在明显降低,变频器起动性能和调速平稳性能得到大大提高,减少了电机起动对煤矿配电网的冲击。因此,结合煤矿井下通风系统的实际情况,采取变频调速技术对原电机控制系统进行技术升级改造,就显得非常有意义。

1电机变频调速控制原理

煤矿井下通信系统中风机电机拖动系统,由于受当时建设技术水平和综合投资资金的制约,存在电源浪费严重等问题。采取基于PLC与变频器的变频调速技术升级改造,可以达到节能降耗的目的。电机拖动系统的节能通常有两种方法,一种是直接采用节能电机,如永磁同步电机;另一种是采用变频调速等控制系统来动态调节电机输入电源频率,达到风机拖动系统输入与输出间的实时动态平衡,进而达到电机调节运行节能降耗的目的。基于PLC与变频器的电机变频调速控制系统具有体积小、重量轻、起动转矩大、控制精度高、功能强、可靠性高、操作维护简单便捷、兼容性强等优点,要明显优于以往常规电机调控模式,使用它除了具备调速稳定可靠的优点外,还可以节约大量电能资源。

风机电机的输出转速(转矩)同电机输入电源频率、转差率以及电机磁极对数三个因素有直接关系。电机输出转速可以表示为:

(1)

式(1)中:为电机的磁极对数;为电机运行实时电源频率;为滑差。

从式(1)可知,对于交流电机拖动系统而言,要实现电机拖动系统在实际调节运行过程中,具有较高调控稳定精确性和节能经济性,可以采取三种方法,即改变电机的磁极对数p、通过内部转子串联电阻等改变电机的滑差率s、改变电机实时电源频率f。改变电机磁极对数p和滑差率s,均需要改变电机内部结构,这在很大程度上受到电机制造工艺、生产技术等因素的制约。而调节电机输入电源的频率f,不仅不需要改变电机的内部结构,而且只需要外加变频器作为电机输入电源的调控单元,就能完成对电机控制系统的动态调节。同时采用变频调速后,能够经过变频器和PLC的动态调控,使整个电机拖动系统长期处于最优工况,达到节能降耗的目的。从技术性、调节运行节能经济性等方面来看,变频调速控制较其他节能方案在可行性、可靠性、精确性等方面更加优越,是电机节能降耗工程中常采用的技术措施。

2电机拖动系统变频调速节能改造的技术要点和功能效果

煤矿通风系统中的风机电机拖动系统采用基于PLC与变频器的变频调速技术升级改造方案中,其节能改造实现的基本控制要求包括以下两个方面:

(1)节能控制系统应具备抑制电磁干扰的相应有效技术措施,能够防止非正弦波干扰风机电机拖动控制系统中的电脑主机、计时器、传感器等精密仪器设备的高效稳定工作,也就是采用变频调速控制系统进行技术升级改造过程中,不能改变风机电机控制系统的其他功能单元和元器件设备的正常稳定运行性能参数。

(2)在变频调速节能运行过程中,当风量检测系统出现故障时,变频调速控制系统将以电机拖动系统上限频率进行恒功率运行,以确保系统最大的风量。当变频调速控制系统出现故障时,能够发出声响及指示灯指示,提醒运行管理人员进行相关设备性能检查,同时起动原控制系统(如软起动、继电器直接起动等)。

风机电机拖动系统采用变频调速控制技术升级改造后,能够取得较好的节能经济效益、延长使用寿命等功能效果,具体表现为:

(1)速度调节范围较宽。基于PLC与变频器的变频调速控制系统,其控制可靠性和精确度较高,且其速度控制范围较宽,理论上能够实现在1%~100%范围内的连续动态平滑节能调节控制。

(2)实时调节误差较小,精度较高。可以达到±0.5%的误差范围。

(3)电能利用效率较高。电机转换效率可以达到96%以上,同时电机拖动系统功率因素可以达到95%,节省了大量无功功率,降低了配电网变压器的无功调节负担,提高了供电系统的供电可靠性。

(4)具备软起动功能。能够有效抑制电机起动冲击电流,确保电机起动具有较高安全可靠性,可以延长电机拖动系统的综合使用寿命。

(5)节能节电效果十分明显。采取变频调速控制系统进行技术升级改造后,比常规继电器直接起动控制系统,其节能节电效率通常可以达到30%以上。

3电机拖动系统变频调速节能改造效益分析

3.1电机变频调速节能改造方案

一大型煤矿井下通风系统中共采用3台通风机(按照两用一备控制模式设计),其进口温度为22℃,进口压力为99.12kPa,升压为68kPa,轴功率为207kW,配置异步电动机型号为Y355M1-2-220kW/380VF级IP55,功率为220kW。为了提高煤矿井下通风系统运行的可靠性、经济性、节能性,结合煤矿井下通风系统的实际运行工况,按照“最小改动、最大可靠性、最优经济性”等改造原则,对煤矿井下通风电机拖动系统进行技术升级改造。决定采用基于PLC与变频器的变频调速控制对煤矿井下通风电机拖动系统进行技术升级改造,为了分析改造经济效益,决定1#风机采用变频调速运行方式,2#风机采取工频运行方式。

3.2电机拖动系统变频调速升级改造节能效益分析

在各项运行技术指标和环境均相同的情况下,1#风机与2#风机相比,1#风机其调节运行工况性能要更加平滑稳定,平均运行电流降低到326A,比工频运行额定电流的408A要直接降低82A,理论节电效率为:,实际节电效率为43%,节能节电效果十分明显。

4结语

根据通风空调系统电机变频调速节能控制技术原理,对煤矿井下通风电机拖动控制系统进行技术升级改造,使井下通风系统运行更加安全可靠和节能经济,同时煤矿井下通风系统电机拖动设备的综合使用寿命也得到延长。结合一大型煤矿井下通风系统具体节能改造工程的节电经济效益分析计算,可以得出煤矿井下通风系统变频调速升级改造的节能优越性。对煤矿井下通风系统风机电机拖动系统的变频调速节能升级改造,这个通风系统运行的稳定性和可靠性得到了进一步提高,井下通风温湿度指标也能满足实际煤炭开采需求。在现代变频调速控制技术的进一步完善和成熟下,变频调速节能改造电机拖动系统将成为煤矿井下通风系统节能升级改造的重要方法之一。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

电机拖动中变频调速技术的实际应用分析

随着时代的进步和社会经济的发展,我国电力系统发展迅速,工业化程度的提高和城市化进程的加快,促使电力资源在国民经济发展中发挥着越来越大的作用。在对一个国家经济发展水平进行衡量时,电气化程度也被作为一个很重要的衡量指标。文章简要分析了电机拖动中变频调速技术的实际应用,希望可以提供一些有价值的参考意见。

电力系统的安全稳定运行,会对人们的日常工作生活以及社会经济的发展产生直接影响,因此,相关部门越来越重视电力系统的安全和可靠运行。随着科学技术的不断发展,变频调速技术得到了飞速发展和普遍应用,将其应用到电机拖动中,具有一系列的优势和价值。

1变频调速技术概述

具体来讲,变频调速技术指的是依据电机转速会直接受到工作电源输入频率的影响关系,通过对电动机工作电源频率进行改变,而对电机转速进行适当调整。随着科学技术的发展,如今在我国的日常生活和工作中,已经开始广泛的应用变频调速技术。目前,已经出现了诸多的变频调速控制方式,如直接转矩控制、矢量控制等等。数字控制技术的发展以及半导体技术的普遍应用,不仅在高性能范围内开始应用矢量控制,在驱动领域以及专用驱动领域内也开始广泛应用矢量控制,并且在人们日常生活的家用电器中也开始广泛应用,如变频空调、冰箱等等。此外,在一些其他的领域内也开始应用交流驱动器,如工业机器、电动汽车等等。

2变频调速技术在电机拖动中的应用

具体来讲,电机拖动包括诸多方面的内容,比如直流电机、电机系统的运动方程以及直流电机的静态特点、动态特点以及变压器等等。我们从控制类别方面来讲,转速开环是卸油泵电动机的变频调速系统,电源变频调速系统则是利用恒压频度比来控制的。在实际的使用过程中,要想控制输出直流电压,主要依据的是电压。

通过速度给定,可以获得整个电力系统中的控制信号,即使在是跳跃变化的情况下,进行速度给定,也可以对逆变器的输出电压以及电流的规律性变化进行协调和控制。因此,我们将给定积分器给设定下来,用斜坡输出信号来替代跳跃输入,这样就可以对电机的正转和反转进行有效的控制。通过实践得知,在整个电机拖动系统运行过程中,利用正负电压来有效划分速度给定以及给定的积分器输出。因为正值的信号电压是控制电流器的输出电压和逆变器的输出频率,那么设置的变换器在绝对值方面,没有较大的差异。通过大量的实践研究表明,变频器系统具有较为广泛的调速范围,并且有着较好的调速平滑性,可以对电机启动时性能进行有效的改善,因此可以有效适用于电机拖动中,此外,也可以广泛应用于船舶电力拖动中。采用的控制信号是一样的,只需要协调输出电压和输出频率,更加理性的认知变频调速技术,就可以在电机拖动中更好的应用变频调速技术。

3变频调速技术的合理应用

一是无功补偿原理的作用:无功补偿装置装设的目的是对供电效率进行提高,对供电环境进行改善,它将两种负荷之间能量交换的原理给充分利用了起来,来对供电变压器和输送线之间的耗损进行补偿,在供电系统中,无功补偿装置是不可获取的一个组成部分;只有合理选择了补偿装置,将其应用于电力系统中,才可以对电网功率因数进行有效的提高,对网络耗损进行最大限度的减少,促使电网质量得到有效提高。

在对无功补偿装置进行选择时,通常是将分组投切的电容器以及电抗器应用过来,在一些特殊情况下,调相机以及静止无功补偿装置也是不错的选择;满足了无功平衡的要求,为了促使电压质量标准的要求得以实现,还需要将调压装置应用过来。要将分层分区以及就地平衡的原则应用到电网的无功补偿中,同时,还需要将变电站的无功调节能力给充分纳入考虑范围,并且将电压优化以及功率因数给大力推广开来,积极的应用先进的技术,如电网无功管理系统软件等等,促使电网质量得到更加好的提高,促使电网更加安全可靠的运行。

二是变频器负载标准:相较于变压器和电动机的发热时间,半导体器件的发热时间往往较小,通常在计算时候都采用的是分钟,如果出现了过载超温问题,将会带来很大的问题。因此,就需要严格规定负载条件。需要对变流器的运行种类进行划分,第一级额定输出为电流完全输出,过载情况不会出现;第二级为可以连续输出基本负载电流,短时过载运行可以达到百分之五十;第三级到第六级过载则需要更长的时间。目前在市场上,一般只对第二级以及第一级进行销售。此外,还需要结合生产机械负载性能和调速范围等要求,来对变频器进行合理选择。

4变频器运行的可靠性

通过大量的调查研究发现,温度会在很大程度上影响到变频器运行的可靠性。如果变频器有着较大的功率,那么往往将空气冷却的方法应用过来,也就是将换气扇合理安装于顶部,这样就可以更好的进行换气,向室外排放柜内的热空气,对不断恶化的装置环境进行有效的改善;因为变频器是完全封闭的,需要控制其内部温度在50摄氏度以下;但是对于南方的夏季,往往比较的炎热,温度通常会在50摄氏度以上,要想保证变频器能够正常可靠的运行,就需要采取一系列的降温设备,如空调等等。但是这些外部设备的应用,虽然在较短的时间内对温度进行降低;却会对正常通风产生影响,并且室内噪声也会得到较大程度的增加,因此这种措施是不够合理和科学的。因此,我们就需要结合具体情况,合理安排空冷的位置,最好将管道式通风装置应用到柜顶,这样就可以向室外直接排放室内的热空气。在一些特殊的情况下,还需要结合具体情况对变频器进行科学选择,并且需要定期经常的维修和保护那些容易出现问题的部位,避免损坏到变频器。

5结束语

通过上文的叙述分析我们可以得知,随着时代的发展和社会经济的进步,社会的电力需求越来越大,电力系统运行的稳定性和安全性将会对人们的日常生活和工作以及国家的长治久安产生直接的影响;针对这种情况,就需要不断的改善和完善电力系统,更好的服务于人们生活和社会发展。通过大量的实践研究表明,将变频调速技术应用到电机拖动中,具有一系列的优势和价值,可以对电力系统的安全稳定运行起到保障作用。相关的工作人员需要不断努力,革新技术,总结经验,将变频调速技术更好的应用到电机拖动中。文章简要分析了电机拖动中变频调速技术的实际应用,希望可以提供一些有价值的参考意见。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

变频调速技术在电机拖动中的有效运用

随着科学技术的不断发展,变频调速技术得到了飞速发展和普遍应用,将其应用到电机拖动中,具有一系列的优势和价值。本文简要分析了变频调速技术在电机拖动中的有效运用,希望能给大家提供一些有价值的参考意见。

一、变频调速技术概述

变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控制等技术于一身的综合性电气产品。

变频调速技术已深入我们生活的每个角落,变频调速系统的控制方式包括V/F、矢量控制(VC)、直接转矩控制(DTC)等。V/F控制主要应用在低成本、性能要求较低的场合;而矢量控制的引入,则开始了变频调速系统在高性能场合的应用。近年来随着半导体技术的发展及数字控制的普及,矢量控制的应用已经从高性能领域扩展至通用驱动及专用驱动场合,乃至变频空调、冰箱、洗衣机等家用电器。交流驱动器已在工业机器人、自动化出版设备、加工工具、传输设备、电梯、压缩机、轧钢、风机泵类、电动汽车、起重设备及其它领域中得到广泛应用。

二、变频调速技术在电机拖动中的应用

电机拖动包括诸多方面的内容,如直流电机、电机系统的运动方程以及直流电机的静态特点、动态特定以及变压器等等。我们从控制类别方面来讲,转速开环是卸油泵电动机的变频调速系统,电源变频调速系统则是利用恒压频度比来控制的。在实际的使用过程中,要想控制输出直流电压,主要依据的是电压。

通过速度给定,可以获得整个电力系统中的控制信号,即使在跳跃变化的情况下,进行速度给定,也可以对逆变器的输出电压以及电流的规律性变化进行协调和控制,因此,我们将给定积分器给设定下来,用斜坡输出信号来替代跳跃输出,这样就可以对电机的正转和反转进行有效的控制。通过实践得知,在整个电机拖动系统运行过程中,利用正负电压来有效划分速度给定以及给定的积分器输出。因为正值的信号电压是控制电流器的输出电压和逆变器的输出频率,那么设置的变换器在绝对值方面,没有较大的差异。通过大量的实践研究证明,变频器系统具有较为广泛的调速范围,并且有着较好的调速平滑性,可以对电机启动时性能进行有效的改善,因此可以有效适用于电机拖动中,此外,也可以广泛应用于船舶电力拖动中。采用的控制信号是一样的,只需要协调输出电压和输出频率,更加理性的认知变频调速技术,就可以在电机拖动中更好的应用变频调速技术。

三、变频调速技术的合理应用

1、无功补偿原理的作用

无功补偿装置装设的目的是对供电效率进行提高,对供电环境进行改善,它将两种负荷之间能量交换的原理给充分利用了起来,来对供电变压器和输送线之间的损耗进行补偿,在供电系统中,无功补偿装置是一不可获取的一个组成部分;只有合理选择了补偿装置,将其应用于电力系统中,次啊可以对电网功率因数进行有效的提高,对网络损耗进行最大限度的减少,促使电网质量得到有效提高。

在对无功补偿装置进行选择时,通常是将分组投切的电容器以及电抗器应用过来,在一些特殊情况下,调相机以及静止无功补偿装置也是不错的选择;满足了无功平衡的要求,为了促使电压质量标准的要求得以实现,还需要将调压装置应用过来,要将分层分区以及就地平衡的原则应用到电网的无功补偿中,同时,还需要将变电站的无功调节能力给充分纳入考虑范围,并且将电压优化以及功率因数给大力推广开来,积极的应用先进的技术,如电网无功管理系统软件等,促使电网质量得到更加好的提高,促使电网更加可靠的运行。

2、变频器符合标准:

相较于变压器和发动机的发热时间,半导体器件的发热时间往往较小,通常在计算时候都采用的是分钟,如果出现过载超温问题,将会带来很大的问题。因此,就需要严格规定负载条件,需要对变流器的运行种类进行划分,第一级额定输出为电流完全输出,过载情况不会出现;第二级也可以连续输出基本负载电流,短时过载运行可以达到百分之五十;第三级到第六级过载则需要更长的时间。目前在市场上,一般只对第二级以及第一级进行销售。此外,还需要结合生产机械负载性能和调速范围等要求,来对变压器进行合理选择。

四、变频器运行的可靠性

有专业人员曾通过大量的调查研究发现,温度会在很大程度上影响到变频器运行的可靠性。如果变频器有着较大的功率,那么往往将空气冷却的方法应用过来,也就是将换气扇合理安装于顶部,这样就可以更好的进行换气,向室外排放柜内的热空气,对不断恶化的装置环境进行有效的改善;因为变频器是完全封闭的,需要控制其内部温度在502摄氏度以下,但是对于南方的夏季,往往计较炎热,温度通常会在50摄氏度以上,要想保证变频器能够正常可靠的运行,就需要采取一系列的降温设备,如空调等等,但是这些外部设备的应用,虽然在较短时间内对温度进行降低,却会对正常通风产生影响,并且室内噪声也会得到较大程度的增加,一次这种措施是不够合理和科学的。因此,我们就需要结合具体情况,合理安排空冷的位置,最好将管道式通风装置应用到柜顶,这样就可以向室外直接排放室内的热空气。

通过上文的叙述我们可以得知,随着时代的发展和社会经济的进步,社会的电力需求越来越大,电力系统运行的稳定性和安全性将会对人们的日常生活和工作以及国家的长治久安产生直接的影响,针对这种情况,就需要不断的改善和完善电力系统,更好的服务于人们生活和社会发展。而且,通过大量的实践研究表面,将变频调速技术应用到电机拖动中,具有一系列的优质和价值,可以对电力系统的安全稳定运行起到保障作用,相关的工作人员需要不断努力,革新技术,总结经验,将变频调速技术更好的应用到电机拖动中。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

初探起重机电机拖动系统的负载跟踪

在我国科学技术不断发展的今天,各种重型设备的应用性不断增强。起重机作为一种常见的、有效应用的设备,其可以有效的抬起重物,大大节省人力劳动。当然,要实现起重机长期稳定、安全、高效的应用,并不是非常容易的,需要对起重机电机拖动系统的负载跟踪予以合理的设计,有效的控制电机拖动系统,促使电机可以保持相对稳定的状态,为使起重机更好的运行创造条件。对此,本文就起重机电机拖动系统的负载跟踪进行分析和探讨。

引言:

起重机属于起重机械中的一种,其同时也是一种循环间歇运动的机械。对于起重机的应用,主要是将重物提起,将其平移到指定地点后降落物品,紧接着做反向运动,进行下一个重物的运输。起重机整个运作过程中,起重机电机拖动系统发挥巨大作用,其直接决定起重机能否将重物提起,并稳定的放在指定位置。当然,起重机电机拖动系统在具体运用的过程中容易受某些因素的影响,促使电机拖动系统运行不稳定,并且浪费电能。所以,加强起重机电机拖动系统的负载跟踪进行设计,有效的控制电机拖动系统,可以提升起重机电机拖动系统应用性。本文将从起重机电机拖动系统的力学方程分析展开,系统的探究起重机电机拖动系统的负载跟踪设计。

一、起重机电机拖动系统的动力学方程分析

对于起重机电机拖动系统的动力学方程的分析,需要结合起重机起升机构电机拖动系统图,依据相关的动力学原理,科学地、合理地分析,才能够详细地掌握整个起重机电机拖动系统的动力学方程,为后续准确的分析。设计起重机电机拖动系统的负载跟踪提供条件。对此,本文笔者参照某型号起重机起升机构电机拖动系统示意图(如图一所示),展开具体的分析。从图一可以知道分别为中间轴、卷筒、滑轮的传统效率。假设为起重机吊重物起升的速度、为起重机所吊重物的质量、为起重机吊具的质量、为起重机电机转子转动惯量、为制动轮和联轴器的转动惯量。根据动力学相关理论,可以得到关于起重机吊具上钢丝绳张力的公式,即:

在对起重机吊具上钢丝绳张力进行公式计算的过程中,因为是以动力学相关理论为基础,所以本文仅考虑吊具在提重物上升过程中所消耗的电能,对于其他因素所引起的能量消耗在此予以忽视。

二、起重机电机拖动系统的负载跟踪设计

综合上文起重机电机拖动系统的动力学方程式,对于起重机电机拖动系统的负载跟踪的设计主要是利用坐标轴分析的,这可以更为直接的分析电机拖动系统的负载跟踪,为实现起重机电机拖动系统可以稳定、有效应用创造条件。

对于起重机电机拖动系统的负载跟踪的设计,首先设计电机静止正交坐标系与旋转坐标系(如图三所示)。假设电机静止正交坐标系和以定子同步角速度,旋转得到两相旋转正交坐标系MOT,其中M轴与轴夹角为,且。那么,TM坐标系上电机转子磁链的矢量,将会与M轴某一点相交,从而可以实现整个系统的同步旋转。另外,由于在起重机电机拖动系统持续运作的过程中,电机转子磁链的矢量将会一直同M轴相交,这就意味着,转子磁链值与电子转子磁链矢量相等。

利用以上内容完成整个起重机电机拖动系统的负载跟踪设计。为了可以更加准确的、有效的、合理的、科学的完成起重机电机拖动系统的负载跟踪设计,笔者在此引入基于转差角频率的矢量变频控制系统原理图(如图四所示)。从转差角频率的矢量变频控制系统原理图可以了解电机转速计算中,需要运用到转速调节器对定子电流转矩分量予以计算,进而了解MT坐标系的同步旋转角速度。综合以上同步旋转角速度函数公式,以及起重机电机拖动系统实际情况,可以了解整个系统负载跟踪的应用需求。而积分器的因公可以测量出转角频率的矢量的变换角。利用矢量变换角可以得到电压励磁分量和转矩分量,相应的可以利用电压型逆变器对电压进行控制,从而实现起重机电机拖动系统的有效控制,促使电机稳定、安全、有效的运用。

结束语:

起重机电机拖动系统负载跟踪的设计是非常必要的,可以保证电机拖动系统相对稳定的运行,有效的节约电能。从起重机电机拖动系统负载跟踪控制的特点来看,电动机转子容易受到某些因素的影响。所以,在具体设计起重机电机拖动系统负载跟踪过程中,需要分析起重机电机拖动系统的动力学方程,了解转子电压、电流与磁链之间的关系。以此为依据构建电机静止正交坐标系与旋转坐标系,对电动机转子运作中负载转矩、定转速度等方面进行分析,从而科学、合理设计电机拖动系统负载跟踪,为保证起重机电机拖动系统稳定运作创造条件。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接