工业伺服节能改造,关于专业生产工业节能混水器的厂家信息聚合页,专注于专业生产工业节能混水器的厂家:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能

注塑机伺服节能改造

  注塑机工作原理  原定量泵(多为叶片泵)+ 异步(鼠笼式)电机的运行中,马达高速恒定持续运转,使油泵100%输出,当动作的速度越慢、动作的 时间越长、压力越大,潜在节能的幅度

4142018-06-28 09:34:30

查看详情

为什么注塑机伺服节能改造要比其他节能方式节电率要高?

为什么注塑机伺服节能改造要比其他节能方式节电率要高?注塑机节能改造的方法有很多,其中主流方式为:将原系统改造为伺服控制系统。为什么伺服控制系统要比其

1632018-08-15 17:00:09

查看详情

铝型材挤压机节能改造方案

一、项目总述某铝型材公司作为铝型材行业的领军者、企业管理的先驱者,在响应国家节能减排号召、开展能效管理工作方面拥有良好的管理基础和实施条件。本报告结合该公司的管理

1172018-06-25 14:35:10

查看详情

压铸机节能改造方案

第一章 压铸机现状介绍1.1 原机台配置情况现有压铸机20台进行配置,改造前机台具体配置如下: 品牌 型号 数量 油泵型号 电机转速 RMP 电机功

892018-06-25 13:52:35

查看详情

油压机节电节能改造方案

第一章 油压机现状介绍 1.1 原机台配置情况 贵司现有油压机47台,进行配置,改造前机台具体配置如下: 品牌 吨位 T 数量 台 电机功率 电机转速 油泵排量 系统流

882018-06-25 14:13:47

查看详情

油压机伺服节能改造

  油压机伺服节能改造  油压机工作原理  电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、

842018-06-25 16:26:02

查看详情

液压站伺服节能改造

液压站伺服节能改造 液压站工作原理电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后

842018-06-28 09:31:14

查看详情

空压机节能改造

  空压机节能改造  对空压机节能的改造方式主要有以下两种  1.变频调速方式  采取变频调速方式来降低空压机电动机的轴功率输出。改造之前,空压机的压力达到设定压力

742018-06-25 16:42:26

查看详情

注塑机伺服节能改造的原理大揭秘

  注塑机伺服节能改造的原理大揭秘   注塑机通过徕卡节能设备产品改造之后,正常节电率在:30%-80%  那注塑机节能改造,其改造原理是什么?  注塑机节能改造后的设备,系统

712018-06-26 14:49:16

查看详情

注塑机料筒节能改造

  注塑机料筒节能改造  注塑机料筒节能通过注塑机干燥机高效节能系统进行节能。  该干燥机高效节能系统是将干燥机排出的热风,经高效节能转换系统,吸收热量排出湿气粉尘

482018-06-29 16:22:33

查看详情

江苏省发布“十三五”节能减排实施方案 未达标将问责地方政府

  中国江苏网7月3日讯 近日,省政府印发《江苏省“十三五”节能减排综合实施方案》。《方案》为江苏“十三五”持续深化节能减排划定了具体的路线图和

452018-11-06 13:30:58

查看详情

注塑机伺服节能改造为什么会节能省电?

一般我们常见的注塑机的提供动力组成由电机和油泵组成,电机驱动油泵输出恒定流量。  注塑机一开机,电机和油泵就会一直处于满负荷运转工作。  经过伺服节能改造之后的注塑

442018-09-26 08:38:54

查看详情

工厂节能降耗措施有哪些?

工厂节能降耗措施有哪些?徕卡节能电气,专业从事工业节能15年,在工业节能方面,主要对生产车间内大型液压油压设备做伺服系统节能改造。工厂的节能降耗项目,节能改造

382018-08-03 13:06:08

查看详情

伺服节能改造方案内为何配置的伺服同步电机要比原有的异步电机功率不一样

  伺服节能改造方案内为何配置的伺服同步电机要比原有的异步电机功率不一样?  伺服同步电机与异步电机工作方式不同,伺服同步电机的功率是随着负载的变化而变化的,普通电

372018-07-31 16:55:28

查看详情

注塑机如何实现30%~80%节电率的节能改造

注塑机做节能改造,首选推荐“伺服控制系统”的节能改造。 注塑机,典型的周期性动作、变动负荷的生产设备。其一套完成的生产周期为“锁模、射胶、溶

362018-08-21 14:28:55

查看详情

注塑机节能改造方案

某磨具企业,注塑机节能改造方案

352018-06-25 13:43:47

查看详情

徕卡节能电气参与《2018昆山节能环保产业展览会暨论坛》

  江苏是中国节能环保产业最发达的省份之一和是全国重要的节能低碳环保产业基地。在节能低碳、水污染治理成套设备、大气污染治理成套设备、固体废物处理设备、噪声控制设

332018-12-13 15:53:56

查看详情

什么是液压系统的伺服节能改造?

  什么是液压系统的伺服节能改造?  液压系统  液压系统指的是通过改变液压油的压强大小来传递动力,推动终端设备动作的系统。  一套完整的液压系统大致由五个部分组

332019-01-15 16:46:29

查看详情

空压机余热回收节能改造

  空压机余热回收节能改造  空压机余热回收是一项非常环保的节能方式。空压机余热回收是将空压机的高温油经过热交换等技术处理把热量传递到冷水中,冷水被加热后流到保温

322018-06-25 16:44:55

查看详情

注塑机伺服节能改造,其原理是什么?

注塑机伺服节能改造,其原理是什么?注塑机伺服节能改造,简单来说是:将原异步电机更换为永磁同步电机|伺服电机(液冷、强制风冷),将原油泵更换为伺服油泵,还需要一台伺服

312018-07-27 15:44:20

查看详情

工厂设备节能改造节电率能达到多少?

  工厂设备节能改造节电率能达到多少?  答:工厂节能设备的节电率有高有低,具体需要根据设备及设备的使用工况来决定的。以上阐述的设备节电率为一般情况的节电率。  注

302018-06-26 09:03:11

查看详情

注塑机未节能改造其主要电能消耗在哪几个部分?

注塑机未节能改造其主要电能消耗在哪几个部分? 1、液压系统油泵的电能消耗 2、加热器的电能消耗 3、循环冷却水泵的电能消耗(在注塑车间内,一般多台注塑机共用一台冷却水泵),其中

302018-06-26 14:36:19

查看详情

企业推进注塑机伺服节能改造,想知道注塑机在什么工作阶段最省电节能?

  企业推进注塑机伺服节能改造,想知道注塑机在什么工作阶段最省电节能?   一般注塑机在注塑成型“保压”以及产品“冷却”的过程中,异步电机都是在

292018-08-09 17:01:30

查看详情

国家发展改革委:推动节能环保领域健康发展

  国家发展改革委:推动节能环保领域健康发展  央视新闻客户端12月21日消息,在昨天(20日)举行的2018中国节能与低碳发展论坛上,国家发展改革委有关负责人表示,今后将进一步健

292018-12-21 08:59:36

查看详情

专访苏州徕卡节能电气技术有限公司副总倪春林

  专访苏州徕卡节能电气技术有限公司副总倪春林  前言  有一句话说得非常好,没有传统的行业,只有传统的企业。这两个月,当我们的编辑团队深入近30家企业采访交流时,不论采

282019-02-12 14:07:42

查看详情

工业节能与大数据相结合,为节能事业发展指明方向

  徕卡节能:未来工业节能与大数据结合为发展方向   (徕卡节能大数据技术能源管理系统示意图)  节能减排作为我国当前重点发展产业,发展好坏事关我国当前“调结构,稳

282019-02-18 11:28:11

查看详情

铝型材挤压机伺服节能改造

铝型材挤压机工作原理开始挤压前,将挤压筒、挤压模具、铝棒先进行加热,达到工艺温度时由控温仪自动控制,使其保持恒温。挤压时,装上规格模具后合上中动板,使模具端面与挤压筒面锁

272018-06-28 09:46:07

查看详情

中央空调节能改造

    中央空调工作原理  一般来说,中央空调系统的大负载能力是按照天气热、负荷大的条件来设计,但实际上系统极少在这些极限条件下工作。根据有关资料统计,空调设备95%的

272018-06-25 16:35:37

查看详情

节能改造项目产品之:液压伺服控制系统适用设备简析

  徕卡节能改造项目产品之:液压伺服控制系统  液压伺服控制系统主要适用行业及设备:  1、冶金业  设备举例:  液压站  2、注塑机  3、铝型材  设备举例:  挤

272018-06-26 09:31:05

查看详情

注塑机节能节电都有哪些方法?如何降低注塑机用电量?

注塑机节能节电都有哪些方法?如何降低注塑机用电量?针对未经节能改造以液压油压为动力的注塑机,从目前技术来看,注塑机节能改造方法主要有以下几个方面:1、注塑机伺服系统节能

262018-07-24 09:21:26

查看详情
节能改造关注问答
1、

直流电机做发电机使用注意事项



上图为直流电机的俯视图,关于直流电机做发电机使用的时候,有以下几点要注意:

(1)因为电枢导磁,故图中线圈内部(黑色)不存在电磁感应现象。磁场只存在于电枢外部和电枢铁芯中。

(2)电刷与正负极出线固定,换向器随转子做逆时针运动,如图。

(3)一般来说一个换向器对一个电刷,也有3个左右换向器对一个电刷。

结论:

(1)关于直流电机做发电机时候正负极的判断:蓝色铁芯导慈,故图中黑色部分不存在磁场,所以只在蓝色铁芯外做切割磁感线运动,故电动势只产生于蓝色铁芯外部。

然后图中逆时方向运动,电动势如图所示,以图中正极为例的话,电动势流向电刷,再由电刷流向外部电路,这和电源正极的特点一样,故为正极。同理可知右边部分为负极。

(2)输出电动势为关联各换向片的电动势和,此处关联是感应电动势方向与正负极关联。

(3)关于正负极为什么位于图中位置时,所得电动势最大,是因为如果不是图中的位置,会有正负电动势在同一极的关联方向相互抵消。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

电机容量的选择

1、连续工作制电动机容量的选择

1.带恒定负载时电动机容量的选择

对于负载功率恒定不变(如通分机、泵、重型机床、立车、齿轮铣床的主转动等)的生产机械、拖动这类机械的电动机在连续运行时的负载图及温升曲线如图7.2所示。这类工作机械选择电动机时,只需按设计手册中的计算公式算出负载负载所需功率,再选一台额定功率为的电动机即可。

因为连续工作制电动机(这类电动机有些铭牌上没有特别标明工作制)的启动转矩和最大转矩均大于额定转矩,故一般不必校验启动能力和过载能力。仅在重载启动时,才校验启动能力。

2.带变动负载时电动机容量的选择

在多生产机械中,电动机所带的负载大小是变动的,例如,小型车床、自动车床的主轴电动机一直在转动,但因加工工序多,每个工序的加工时间较短,加工结束后要退刀,更换工件后又进刀加工,加工时电动机带负载运行,而更换工件时电动机处于空载运行。其他如皮带运输机、轧钢机等也属于此类负载。有的负载是连续的,但其大小是变动的,如图7.3所示。在这种情况下,如果按生产机械的最大负载来选择电动机的容量,则电动机不能充分利用,如果按最小负载来选择,则容量又不够。为了解决该问题,一般采用所谓“等值法”来计算电动机的功率,即把实际的变化负载化成一等效的恒定负载,而两者的温升相同,这样就可根据得到的等效恒定负载来确定电动机的功率。负载的大小可用电流、转矩或功率来代表。

电动机的温升取决于它发出的热量,而电动机发出的热量是由损耗产生的,损耗有两部分,一是不随负载变化的不变损耗(包括铁损与机械损耗),一是与负载电流的平方成正比的可变损耗(铜损)。例如,图7.3所示的负载,对应于工作时间、……的负载电流为、……,则电动机在各种不同负载时的总损耗为


然后选择电动机的额定转矩,使即可。这就是等效转矩法,对生产机械来说,作出机械转矩负载图是不难的,因而等效转矩法应用广泛。

当电动机具有较硬的机械特性,转速在整个工作过程中变化很小时,则可近似地认为功率,于是式(7.3)可化成等效功率来计算,即


因用功率表示的负载图更易于作出,故等效功率法应用更广。

然后选择电动机的额定功率,使即可,这就是等效功率法。不管采用哪一种等效法选择电动机的容量,都只考虑了发热方面的问题。因此,在按“等值法”初选出电动机后,还必须校验其过载能力和启动转矩。如不满足要求,则应适当加大电动机容量或重选启动转矩较大的电动机。

2、短时工作制电动机容量的选择

有些生产机械工作时间较短,而停车时间却很长,例如,闸门开闭机、升降机、刀架的快移、立车与龙门刨床上的夹紧装置等,都属于短时工作制的机械。拖动这类机械的电动机之工作特点是:工作时温升达不到稳定值,而停车时足可完全冷却到周围环境温度,如图7.5所示。由于发热情况与长期连续工作方式的电动机不同,所以,电动机的选择也不一样,既可选用短时工作制的电动机,也可选择连续工作制的普通电动机。

1.选用短时工作制的电动机,规定的标准短时运行时间是10min、30min、60min、及90min四种。这类电动机铭牌上所标的额定功率是和一定的标准持续运行时间相对应的。例如为20KW时,只能连续运行30min,否则将超过允许的温升。所以,要按实际工作时间选择与上述标准持续时间相接近的电动机。如果实际工作时间与不同时,就应先将下的功率(生产机械短时工作的实际功率)换算成下的功率,这可根据等效功率法加以换算,即

然后选择短时工作制电动机,使其,再进行过载能力与启动能力的校验。

2.选用连续工作制的普通电动机

普通电动机的额定功率是按长期运行而设计的,再连续工作时,它的温升可以达到稳定值(即电动机的容许温升,位能充分利用。为了充分利用电动机在发热上的潜在能力,在短时工作状态下,可以使它过载运行,而其过载倍数与有关(如图所示)故选




--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

基于MCF51EM256的智能电动机保护器的设计及应用

采用Freescale公司Coldfire-V0架构内核的32位处理器MCF51EM256芯片,设计了一款高性能的ARD2L智能电动机保护器,并对该保护器的硬件和软件设计方案进行详细介绍。该保护器集众多保护功能于一体,提高了电动机运行的可靠性,减少了因电动机运行故障带来的经济损失。

引言

现代工矿企业中,以电动机作为动力的比例占全部动力的90%以上,它们已是当今生产活动和日常生活中最主要的原动力和驱动装置[1,2],为此检测与保护电动机的正常运行有着非常重要的意义。保护器经历了热继电器、熔断器、电磁式电流继电器、模拟电子式电机保护器,最后发展到数字电子式电机保护器即当今的智能电机保护器。本文设计了一款针对电动机在运行过程中出现的起动超时、过载、欠载、短路、断相、不平衡、接地/漏电、堵转、阻塞、外部故障等情况进行保护的ARD2L智能电动机保护器(以下简称ARD2L),可有效提高电动机运行的安全性,降低生产损失,是传统热继电器的理想替代品[3]。

1硬件设计

ARD2L的硬件电路包括主控芯片MCU,频率信号、电流信号、零序电流信号采集电路,开关量输入模块,继电器输出模块,变送输出模块,RS-485通讯接口,人机交互单元(状态指示灯、数码管/液晶显示),硬件电路框图如图1所示。

1.1主控芯片

MCU芯片采用freescale公司的Coldfire-V0架构内核的32位处理器MCF51EM256,时钟频率最高可达50.33MHz,内置256K的Flash、16K的RAM、4个独立16位A/D通道、3路定时器、3路SCI通讯接口以及内置RTC时钟、I2C、SPI、KBI接口等多种资源,具有极高的性价比。

1.2电源

电源是设备能否正常、稳定、可靠工作的关键部分,ARD2L采用安科瑞的通用开关电源模块。该模块输入电压为AC85V~265V,输入频率45Hz~60Hz,具有多路隔离电压输出,满足多种功能对不同供电电压的要求。其输出电压稳定、故障率小,输出纹波<1%;电源输入部分设计加入压热敏电阻、TVS管、防反接二极管等器件,对过压、过流等有一定的保护作用,同时能使产品通过严酷的EMC测试。该模块经现场实际使用,具有很高的稳定性、可靠性和抗干扰能力[4]。

1.3信号采集电路

信号采集电路负责采集电流信号、频率信号和零序电流信号。其中,电流信号采用互感器隔离输入,将交流信号抬高后送入CPU进行软件差分运算,电流采样电路如图2所示。以A相6.3A规格为例,采用的电流互感器变比为100A:20mA,5P10保护型。该方案电流测量在1.2倍范围内达到0.5S精度,在8倍范围内满足5S精度,而其过载能力按8倍计算,即给互感器加上50.4A电流,通过取样电阻R1的电流为10.08mA,两端电压为0.886V。同时,给采样信号抬高电压UREF=1.2V,使交流信号的幅值大于零,便于A/D采样;在电路的输出端加入限压二极管,使输入电压限制在3.3V以下,能对A/D采样通道起到很好的保护作用。

频率采样电路如图3所示。该电路采用MCP6002双运放进行两级放大,初级放大倍数较小,且在初级与次级之间进行滤波处理,次级运放将交流信号整形为方波信号,通过边沿触发方式捕捉,然后在CPU内部计算测量频率。

1.4人机交互界面

人机交互界面的显示采用数码管或液晶两,用户可以根据实际需要选择显示方式,输入采用按键方式。其中,数码管显示采用动态扫描方式,其驱动电路采用74HC595和三极管构成;液晶显示采用拓普威公司LM12832BCW的128点阵中文液晶,其数据传输采用SPI串口,可极大地节省CPU资源。同时,LED和LCD显示采用同一个SPI接口控制,使得两种显示方式可以通用。

1.5控制模块

控制模块主要由开关量输入、输出组成,如图4所示。其中,开关量输入用于监测断路器、接触器的开关状态和采集现场的工业联锁状态,也可根据客户要求用于电动机的起停控制;开关量输出主要用于输出脱扣信号、报警信号和远程起/停信号。

1.6通讯/变送模块

通讯模块采用RS-485模块ModbusRTU通讯规约,能实现遥测、遥控、遥信等功能。而变送是将我们需要的电流信号转换为DC4~20mA模拟量输出,方便与PLC、PC等控制机组成网络系统,实现电动机运行的远程监控。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


4、

变频电机轴电压与轴电流的产生机理分析


3.轴承模型与轴承电流的产生由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均由一个轴承支撑,其结构如图3所示。以其中一个轴承为例,轴承的滚道由内滚道与外滚道组成,当电机转动时,轴承中的滚珠被润滑油层包围,由于润滑油的绝缘作用,轴承滚道与滚珠之间形成电容,如图3b)所示。这两个电容在转子-定子回路中以串联形式存在(为便于分析,不考虑滚珠的阻抗),可以等效成一个电容cbi,i代表轴承中的第i个滚珠。对于整个轴承而言,各个滚珠与滚道之间的电容以并联形式存在。所以整个轴承内可以等效成一个电容cb。据对轴承的分析,轴承可用一个带有内部电感和电阻的开关来等效。当滚珠未与滚道接触时,开关断开,转子电压建立;当转子电压超过油膜门槛电压时,油膜击穿开关导通,转子电压迅速内放电,在轴承内形成较大放电电流。va、vb和vc为电机三相输入电压,l’、r’和c’为输入电压耦合到转子轴的等效集中参数,cg为crf和cb并联后的等效电容。当轴承滚珠和滚道接触或者轴承内油层被击穿时,cb不存在,此时cg仅代表转子轴对机壳的耦合电容。电容cb是一个多个变量的函数:cb(q,v,t,η,λ,λ,εr)[2]。其中q代表功率,v代表油膜运动速度,t代表温度,η代表润滑剂粘性,λ代表润滑剂添加剂,λ代表油层厚度,εr代表润滑剂介电常数。轴承电容cb与定子到转子耦合电容csr,比定子到机壳耦合电容csf和转子到机壳耦合电容crf小得多。这样一来,耦合到电机轴承上的电压便不至于过大,这是因为crf与cb并联后的电容比耦合回路中与之串联的csr大得多,而串联电容回路中,电容越大承受的电压反而越小。事实上,根据分布电容的特点,很大一部分共模电流是通过定子绕组与铁芯之间的耦合电容csf传到大地去的,因此轴承电流只是共模电流的一部分。从图4可看出,形成轴承电流有两种基本途径。一是由于分布电容的存在,定子绕组和轴承形成一个电压耦合回路,当绕组输入电压为高频pwm脉冲电压时,在这个耦合回路势必产生dv/dt电流,这个电流一部分经crf传到大地,另一部分经轴承电容cb传到大地,即形成所谓的dv/dt轴承电流,其大小与输入电压以及电机内分布参数有关。二是由于轴承电容的存在,电机轴上产生轴电压,当轴电压超过轴承油层的击穿电压时,轴承内外滚道相当于短路,从而在轴承上形成很大放电电流,即所谓的电火花加工(electricdischargemachining-edm)电流。另外,当电机在转动时,如果滚珠和滚道之间有接触,同样会在轴承上形成大的edm电流。为了定量edm及dv/dt电流对轴承的影响,轴承内的电流密度十分关键。建立电流密度需估计滚珠与滚道内表面的点接触区域。根据赫兹点接触理论(hertzianpointcontacttheory),轴承电气寿命可用如下公式求得[2]:eleclife(hrs)=(7)式中,代表轴承电流密度。一般而言,dv/dt电流对轴承寿命影响很小,而由edm产生的轴承电流密度很大,使得轴承寿命大大降低。另外,空载时轴承损坏程度反而比重载时大得多,这是因为重载时轴承接触面积增大,无形中减小了轴承电流密度。

4.轴电压与轴承电流的仿真分析为进一步讨论轴承电流与pwm逆变器输出电压特性以及电机端有无过电压之间的关系,本文对dv/dt电流与edm电流两种形式的轴承电流分别进行仿真分析,结果发现,轴承电流不仅与逆变器载波频率有关,且与逆变器输出脉冲电压的上升时间有关,同时当电机端出现过电压时轴承电流明显增加。先假定电缆长度为零,根据轴承电流的存在形式可知,dv/dt电流主要是由输入跳变电压引起,因此dv/dt电流大小与逆变器载波频率和电压上升时间有关。逆变器载波频率越高,一个正弦波周期内产生的dv/dt电流数量也就越多,但此时电流幅值不变。脉冲电压上升时间是影响dv/dt电流幅值的决定性因素,另外分布电容的大小也影响dv/dt电流幅值。而edm电流产生的直接原因是轴电压的存在,因此轴电压的大小决定了edm电流幅值,轴电压的大小决定于输入电压的大小及电机内分布电容的大小。虽然逆变器载波频率和脉冲电压上升时间都会影响轴电压的形状,但轴电压的峰值与二者都没有关系,因此edm电流与二者也没有本质的联系,这是edm电流与dv/dt电流最大区别之处。当然,edm电流还与轴承油层的击穿电压有关,击穿电压越高,产生的edm电流越大。为讨论方便,假设轴承击穿电压大于或等于轴电压。

4.1改变上升时间tr仿真得到不同上升时间的轴电压与轴承电流波形如图5所示,其中图a)和b)为轴电压波形,图c)和d)为轴承电流波形,电流波形中第一次出现振荡的为edm电流,其他为dv/dt电流。由分析可知,1)tr增大轴承电流减少,包括dv/dt电流与edm电流。尤其是dv/dt电流幅值减小十分明显,但tr对edm电流的影响不大,这主要是因为edm电流由轴电压以及轴承阻抗决定;2)当tr小于一定值(约为200ns)后,dv/dt电流甚至高于edm电流;3)改变上升时间对轴电压的影响不大;4)特殊现象:轴电压在电压击穿时出现两次振荡,tr不影响第一次振荡,但影响第二次振荡,且第二次振荡随着tr的上升而减少,其原因是轴承短路后定子绕组到转子的耦合路径依然存在,所以出现一个dv/dt电流振荡。

4.2改变耦合参数及轴承参数定子绕组对转子的耦合电容越大,轴电压越高,dv/dt电流与edm电流均增加;轴承电容减小,dv/dt电流减小;但edm电流基本不变,此时轴电压上升。其原因是:在共模电路中,轴电压是由定子绕组对转子铁心的电压耦合造成的,维持这一电压的存在靠轴承电容以及转子对机壳耦合电容。由于后两者并联,再与前者串联,因此轴电压按电容值进行分配,电容越大压降越小。一般情况下,轴承电容与转子对机壳耦合电容比定子绕组对转子耦合电容大得多。在只改变轴承电容的情况下,轴承电容越小,整个并联电容等效值下降,轴电压反而上升,由于轴承上的dv/dt电流与容抗及dv/dt成正比,在dv/dt不变时,容抗减小,dv/dt电流下降。仿真结果如图6所示。

5.抑制办法从前面的理论研究和仿真分析可以看出,电机轴承电流产生的一个主要原因是逆变器输出的高频脉冲具有过高的dv/dt前后沿,由此可知,抑制轴承电流的有效办法就是降低逆变器输出电压的dv/dt。但是,逆变器本身输出的脉冲电压上升时间是由功率器件的开关特性决定的,因此只能在逆变器输出端附加装置改变其输出电压的dv/dt。降低逆变器输出电压上升沿dv/dt的一个最直接的办法是在逆变器输出端串上大的电抗器,即可构成所谓的“正弦波滤波器”,逆变器输出的脉冲电压在经过大电抗器后成为完全的正弦波电压,这样便可以消除轴电压与轴承电流。但是这种办法的代价是电抗器的功率损耗大,体积大,造价高,在普通的变频调速系统中应用不是很合适。本文采用折中办法,在逆变器输出端串接电感值不大的电感以抑制电流的快速变化,同时在输出端线间设置rc电抗以吸收输出电压的高次谐波,这样可以适当降低输出脉冲电压上升沿的dv/dt值,达到抑制轴承电流的目的。逆变输出滤波器降低了电机输入脉冲电压的电压上升率,这样一来,电机内分布电容的电压耦合作用便会大大减弱,轴电压以及由此引起的edm电流都会下降,同时由于电压变化率引起的dv/dt电流也会明显减少,因此滤波器可以有效地抑制轴承电流的产生。图8给出了加入滤波器(未接地)前后的电机轴承电流仿真波形,其中,逆变器载波频率为5khz,脉冲电压上升时间为200ns,电缆长100m。从图中可以看出,无论edm电流还是dv/dt电流都明显减少。仿真中还发现,将滤波器接地,无论dv/dt电流还是edm电流相对不接地而言均显着减少,其原因是rc吸收高次谐波的作用更强,能够更好地改善电压波形。

6.在高频pwm脉冲输入下,电机内分布电容的电压耦合作用构成系统共模回路,从而引起轴电压与轴承电流问题。轴承电流主要以三种方式存在:dv/dt电流、edm电流和环路电流。轴电压的大小不仅与电机内各部分耦合电容参数有关,且与脉冲电压上升时间和幅值有关。本文着重讨论前两种方式的轴承电流。dv/dt电流主要与pwm的上升时间tr有关,tr越小dv/dt电流的幅值越大。逆变器载波频率越高,轴承电流中的dv/dt电流成分越多。edm电流出现存在一定的偶然性,只有当轴承润滑油层被击穿或者轴承内部发生接触才可能出现,其幅值主要取决于轴电压的大小。以降低脉冲电压上升率为原则,设计一种在逆变器输出端串小电感并辅以rc吸收网络达到抑制轴电压与轴承电流的目的,仿真结果验证了该方法的有效性。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

龙门刨床的电气改造及节电经济效益分析

本文介绍了早期的由发电机组拖动的龙门刨床或单臂刨床现存的问题,并简述了针对该种类型的刨床改造方式:采用全数字直流调速装置组合先进的PLC控制方式,着重强调了改造后的节能降耗所带来的经济效益以及改造后的其它特点。

一、序言

随着社会的进步,科技的发展,产于上个世纪七、八十年代的龙门刨床的电器控制线路已经十分落后,而且老化严重,故障频繁,维修非常困难,费时费力,效率低,能耗大,同时噪音也很大,污染严重。经过多年的时间经验,我们对老式龙门刨床的电气控制线路进行了彻底的技术改造,将发电机组、交磁扩大机控制的龙门刨床改造成为全数字智能化的电气控制系统。

上个世纪七、八十年代的龙门刨床工作台一般是由一台60KW直流电机拖动。该直流电机参数为:60KW,220V,305A,1000RPM,励磁为220V,4.11A。该直流电机电源采用电动机-直流发电机组和交磁扩大机提供(简称K-F-D系统),采用调直流发电机的励磁电流方式来改变直流电动机的电枢电压,从而达到调速的目的。原来整个电气控制系统比较复杂,使用电器元件也比较多,加之使用时间长,故障频繁。我公司综合以往改造经验,B2010A、B2012A、B2012Q、B2151、B2152、B2016A、BJ2020、B20125Q等10余种型号的龙门刨床及单臂刨床都很适合全数字智能化控制的电气系统改造。

二、早期龙门刨床的特点:

1、刨床的工作台驱动是由交流电动机、直流发电机、直流电动机及交磁扩大机组成。K-F-D控制系统的主要缺点是:起动电流大,对电网容量要求高,机械传动能耗大,传输效率低。

各电机基本参数见下表:

<center></center>2、改造前的龙门刨床电控系统存在的问题及缺点:

⑴设备使用时间长达数十年,电器元件严重老化,故障率频繁,维修费用高,已不能满足目前生产加工的需要;

⑵由于采用的是交直流电动机组,其效率只有0.5~0.68,并且能耗高;

⑶主传动及控制部分中间环节较多,不但增加了维护工作量,也使整个系统可靠性大大降低。

⑷工作台换向及减速靠机械式限位开关实现,减速及换向时撞击声音大,且整个电控系统附带有各种电阻、继电器多,故障点多,低速时速度不稳,换向不稳定,常会出现爬行、越位等故障;

⑹工作台调速范围小,精度(D≤30),加工工件的表面质量差;

⑺占地面积大,噪音高。

三、龙门刨床改造方式及改造后的特点:

1.龙门刨工作台直流电机调速系统的改造:

改造后的龙门刨床工作台直流电机采用英国欧陆公司生产的590+/380A直流调速装置驱动,完全取代直流发电机组和交磁扩大机,实现了工作台的无级调速、自动减速、换向以及撞到极限限位后停车等动作。欧陆590+是具有较高水平的全微机化工业直流电机调速驱动器,输出电流范围在15A~2400A,该产品还具有控制、监控、保护和串行通讯的功能。

590+直流调速装置还有一系列可供用户随意设定的参数,这些参数有些来自外部,如速度给定、转矩给定、速度反馈以及电机的各种特性参数等,同时配备I/O接口,以及P3串行通讯接口,可以方便的与上位机联接通讯,以满足各种参数设置以及与其他装置通讯的需要。

2.用PLC实现龙门刨床的其他电器动作的自动控制:完成龙门刨床自动进刀、抬刀、落刀、横梁升降、横梁夹紧放松、各刀架快速移动以及工作台的加速、减速、换向等各种动作的正常运转。

3.工作台行程限位开关更换为电磁感应的接近开关:性能更稳定,响应时间快,而且使用寿命更比原来的行程开关更长久。

4.在直流电机尾端加装测速发电机后:实现闭环控制,提高控制及定位精度。

5、使用效率:

由欧陆590+和PLC相互配合进行改造后的龙门刨床控制系统最低速度可达5rpm,最高为1500rpm,从起步到全速只需8秒时间,甚至更短时间。从全速到减速换向,可在12秒时间内完成,且换向平稳无冲击,不会发生振荡、爬行、越位等现象,同时可以恒转矩切削,因而大大提高加工精度及效率。通过悬挂按钮箱能完成系统的启动、停止、自动等功能。加工长度范围由悬挂按钮站和工作台上的可以滑动的挡铁完成行程设置,并可以通过PLC的记忆功能来保存,电气柜上有各种报警指示,几乎可以实现无故障、免维护运行。

四、效益分析

使用欧陆590+直流调速装置和PLC结合控制后,节能效果十分明显,改造周期短。因此,将先进的直流调速装置应用到龙门刨床的工作台调速中,无疑是一种很大的技术革新,可以带来较大的经济效益。

以下是我公司对襄樊某厂B220型龙门刨床改造前后的测试实例:

其主传动部分(工作台)采用直流发电机组拖动直流电动机,功率60KW,是主要能耗。其余功耗如横梁升降和刀架的进给等较小可忽略不计。经改造后,电费成本、工艺性能、工作环境及电网干扰等均得到显著改善。

1、测试参数:

有功功率、三相电流、三相电压、功率因素、噪音强度、工作台的进给速度等

2、改造前后测试相关参数:

3、结论分析:

⑴技术数据

⑵老式控制系统与新式控制系统的效果对比见下表:

⑶所产生效益

①直接经济效益

原发电机组在多年生产、制造及用户使用中测定,其起动电流大,对电网容量要求高,且空载电流达80-100安,在工作间隔时间(调整、装卸工件时间),这些电能被白白浪费。改用新型数字调速系统后,这个空载电流完全可以节省下来,且工作间隔时间越长节电效果越明显。按计算,节约功率为△P:

U2=380V;△I取其空载电流中间值

90A;COSΦ取0.40

则△P=1.732×380×90×0.4=24kW

每小时节电24度,按每天工作间隔时间三小时、全年按310天计算:

年节电:W=24×3×310=22320kWh

拆除交磁发电机后,每小时可节约电能约3kW,按每天两班制计算:

年节电:W=3×16×310=14880kWh

另外,采用新型数字调速系统,可以省去了由多台电机之间电能传递而造成的效率损失,其数值为所需加工零件电能的6-10%,按一般性加工时,每天省去的传动效率损耗为80度,全年节电即为24800度。

以上三项合计,全年节电可达6万多度,若每度按0.6元计算,全年节电约为4万余元。

②提高了机床的电气自动化程度,大大降低了机床的故障率和维修费用,年节约成本约1万余元.

③占地面积小,无噪声。除此外,拆除后的发电机组还可以再利用,创造更多的经济价值。

4.改造后的龙门刨控制系统的特点:

⑴该数字直流传动装置能耗低,效率高。工作间隔无损耗,大大节约电能,其效率可达到0.95以上,而直流发电机组只有0.7左右;

⑵起动电流小(起动电流I≤1.5Ie),对电网的冲击小;

⑶调速性能高。590+是一种高精度传动装置,以其自身的优点使整个主传动控制系统的精度、调速范围、快速性能有了很大的改善,提高了加工能力及其加工质量;

⑷结构简单,可靠性高。与交磁扩大机组相比,全数字可逆直流调速装置可减少70KW直流发电机一台,55KW交流电动机一台,交磁放大机一套,同时大大减少了占地面积,使控制系统结构简单、体积缩小;

⑸其它动作均由PLC实现,电器元件少,简单直观。用可编程控制器取代繁杂的交直流继电器控制,大大提高了系统的可靠性,同时维护也十分方便,减少运行成本;

⑹装机水平高,具有完善的保护功能。系统具有良好的保护和监控功能,PLC有自身的输入/输出监控指示灯,而全数字直流调速装置则更有良好的保护监控功能,具有故障存储记忆,自适应参数优化等多种功能;

⑻改造后,由于取掉了交流机组,因而可无噪音运行。

五、结论

早期由发电机组拖动的龙门刨床和单臂刨床都很适合上述电气改造方式。改造后,不仅能耗大大降低,使用效率也得到很大提高。用户仅需要投资几万元,经过一两年的时间就可以收回成本。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

鼠笼式交流异步电动机起动技术

1引言

三相鼠笼式交流异步电动机因其结构简单,性能稳定及无需维护等特点,在各个行业中得到了广泛的应用,但由于其在起动过程中会产生过大的起动电流,会对电网和其他用电设备造成冲击,受电网容量限制和保护其他用电设备正常工作的需要,要在电机起动过程中采取必要的措施。总的来说,在不需要调速的场合,考虑经济的因素,异步电动机的起动可以有两种方法:直接起动和降压起动。

2直接起动

直接起动也就是全压起动,起动方法简单,但交流异步电动机的起动电流大,可达到额定电流的4~7倍,对于国产电动机的实际测量,某些笼形异步电动机甚至可达到8~12倍。过大的起动电流会造成电动机发热,影响电动机寿命;电动机绕组(特别是端部)在电动力作用下,会发生变形造成短路而烧坏电动机;过大电流会使线路压降增大,造成电网电压下降而影响到同一电网的其他用电设备的工作。所以,一般情况下规定,异步电动机的功率低于7.5kw时允许直接起动,如果功率大于7.5kw,在条件不允许的情况下,就需要采用其他方法进行起动。

3降压起动

3.1电阻降压起动

起动原理图如图1所示。q1和q2为接触器;r为起动电阻。

(1)简介

电阻降压起动就是通常所说的定子串电阻起动。在定子电路串联电阻,起动时电流会在电阻上产生压降,降低了电动机定子绕组上的电压,起动电流也从而得到减小。起动时,q1闭合,q2断开,起动完成后,闭合q2。

(2)优点

起动平稳,运行可靠,结构简单,如果采用电阻降压起动,在起动阶段功率因数较高。

(3)缺点

由于起动转矩和定子电压的平方成正比,所以起动时电压降低将造成起动转矩减小,适用于轻载和不频繁起动的场合;起动时电能损耗大,起动成本高。

3.2自耦变压器降压起动

起动原理图如图2所示,q1和q2为接触器。

(1)简介

自耦变压器降压起动利用自耦变压器降低加到电动机定子绕组的电压,以减小起动电流。自耦降压起动的起动电流参照式(1),起动电压参照式(2),起动转矩参照式(3)。

式中,i1为自耦变压器原边电流,即使用自耦变压器时的电机起动电流;

ist为电机直起时的起动电流;ux为自耦变压器起动时的起动电压;t为自耦变压器起动时的起动转矩;tst为电机直起时的起动转矩;w2、w1分别为自耦变压器副边和原边匝数。

为满足不同负载要求,自耦变压器的二次绕组一般有三个抽头分别为电源电压的40%、60%、80%(55%、64%、73%)。

(2)优点

三个电压抽头适合不同负载起动时选择;可以适用于较大容量电动机;

(3)缺点

体积大,质量大,价格高,需要维护检修。

3.3星-三角起动

起动原理图如图3所示,q1和q2为接触器。

(1)简介

星-三角起动要求电机每个绕组有两个出线端,共6个出线端。起动时接成星形,起动完成后必须为三角形。起动时连接成星形的定子绕组电压与电流只有三角形连接时的1/1.732。连接成星形起动时的线电流只有连接成三角形直接起动线电流的1/3;起动转矩和电压平方成正比,因此也是直接起动转矩的1/3。

(2)优点

体积小,重量轻,运行可靠,检修方便。

(3)缺点

只适用于正常运行时接成三角形的电动机;只适用于轻载或空载起动;起动电压是定值,不能根据负载调整。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

三相异步电动机的基本结构

电动机(Motors)是把电能转换成机械能的设备,它是利用通电线圈在磁场中受力转动的现象制成,分布于各个用户处,电动机按使用电源不同分为直流电动机和交流电动机,电力系统中的电动机大部分是交流电机,可以是同步电机或者是异步电机(电机定子磁场转速与转子旋转转速不保持同步速)。电动机主要由定子与转子组成。通电导线在磁场中受力运动的方向跟电流方向和磁感线(磁场方向)方向有关。电动机工作原理是磁场对电流受力的作用,使电动机转动。

(一)定子(静止部分)

1、定子铁心

作用:电机磁路的一部分,并在其上放置定子绕组。

构造:定子铁心一般由0.35~0.5毫米厚表面具有绝缘层的硅钢片冲制、叠压而成,在铁心的内圆冲有均匀分布的槽,用以嵌放定子绕组。

定子铁心槽型有以下几种:

半闭口型槽:电动机的效率和功率因数较高,但绕组嵌线和绝缘都较困难。一般用于小型低压电机中。

半开口型槽:可嵌放成型绕组,一般用于大型、中型低压电机。所谓成型绕组即绕组可事先经过绝缘处理后再放入槽内。

开口型槽:用以嵌放成型绕组,绝缘方法方便,主要用在高压电机中。

2、定子绕组

作用:是电动机的电路部分,通入三相交流电,产生旋转磁场。

构造:由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。

定子绕组的主要绝缘项目有以下三种:(保证绕组的各导电部分与铁心间的可靠绝缘以及绕组本身间的可靠绝缘)。

(1)对地绝缘:定子绕组整体与定子铁心间的绝缘。

(2)相间绝缘:各相定子绕组间的绝缘。

(3)匝间绝缘:每相定子绕组各线匝间的绝缘。

电动机接线盒内的接线:

电动机接线盒内都有一块接线板,三相绕组的六个线头排成上下两排,并规定上排三个接线桩自左至右排列的编号为1(U1)、2(V1)、3(W1),下排三个接线桩自左至右排列的编号为6(W2)、4(U2)、5(V2),.将三相绕组接成星形接法或三角形接法。凡制造和维修时均应按这个序号排列。

3、机座

作用:固定定子铁心与前后端盖以支撑转子,并起防护、散热等作用。

构造:机座通常为铸铁件,大型异步电动机机座一般用钢板焊成,微型电动机的机座采用铸铝件。封闭式电机的机座外面有散热筋以增加散热面积,防护式电机的机座两端端盖开有通风孔,使电动机内外的空气可直接对流,以利于散热。

(二)转子(旋转部分)

1、三相异步电动机的转子铁心:

作用:作为电机磁路的一部分以及在铁心槽内放置转子绕组。

构造:所用材料与定子一样,由0.5毫米厚的硅钢片冲制、叠压而成,硅钢片外圆冲有均匀分布的孔,用来安置转子绕组。通常用定子铁心冲落后的硅钢片内圆来冲制转子铁心。一般小型异步电动机的转子铁心直接压装在转轴上,大、中型异步电动机(转子直径在300~400毫米以上)的转子铁心则借助与转子支架压在转轴上。

2、三相异步电动机的转子绕组

作用:切割定子旋转磁场产生感应电动势及电流,并形成电磁转矩而使电动机旋转。

构造:分为鼠笼式转子和绕线式转子。

(1)鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的端环组成。若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组。小型笼型电动机采用铸铝转子绕组,对于100KW以上的电动机采用铜条和铜端环焊接而成。鼠笼转子分为:阻抗型转子、单鼠笼型转子、双鼠笼型转子、深槽式转子几种,起动转矩等特性各有不同。

(2)绕线式转子:绕线转子绕组与定子绕组相似,也是一个对称的三相绕组,一般接成星形,三个出线头接到转轴的三个集流环上,再通过电刷与外电路联接。

特点:结构较复杂,故绕线式电动机的应用不如鼠笼式电动机广泛。但通过集流环和电刷在转子绕组回路中串入附加电阻等元件,用以改善异步电动机的起、制动性能及调速性能,故在要求一定范围内进行平滑调速的设备,如吊车、电梯、空气压缩机等上面采用。

(三)三相异步电动机的其它附件

1、端盖:支撑作用。

2、轴承:连接转动部分与不动部分。

3、轴承端盖:保护轴承。

4、风扇:冷却电动机。

三相异步电动机型号字母表示的含义:

J——异步电动机;O——封闭;L——铝线缠组;

W——户外;Z——冶金起重;Q——高起动转轮;

D——多速;B——防爆;R一绕线式;

S——双鼠笼;K一—高速;H——高转差率。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

电机拖动中变频调速技术的实际应用分析

随着时代的进步和社会经济的发展,我国电力系统发展迅速,工业化程度的提高和城市化进程的加快,促使电力资源在国民经济发展中发挥着越来越大的作用。在对一个国家经济发展水平进行衡量时,电气化程度也被作为一个很重要的衡量指标。文章简要分析了电机拖动中变频调速技术的实际应用,希望可以提供一些有价值的参考意见。

电力系统的安全稳定运行,会对人们的日常工作生活以及社会经济的发展产生直接影响,因此,相关部门越来越重视电力系统的安全和可靠运行。随着科学技术的不断发展,变频调速技术得到了飞速发展和普遍应用,将其应用到电机拖动中,具有一系列的优势和价值。

1变频调速技术概述

具体来讲,变频调速技术指的是依据电机转速会直接受到工作电源输入频率的影响关系,通过对电动机工作电源频率进行改变,而对电机转速进行适当调整。随着科学技术的发展,如今在我国的日常生活和工作中,已经开始广泛的应用变频调速技术。目前,已经出现了诸多的变频调速控制方式,如直接转矩控制、矢量控制等等。数字控制技术的发展以及半导体技术的普遍应用,不仅在高性能范围内开始应用矢量控制,在驱动领域以及专用驱动领域内也开始广泛应用矢量控制,并且在人们日常生活的家用电器中也开始广泛应用,如变频空调、冰箱等等。此外,在一些其他的领域内也开始应用交流驱动器,如工业机器、电动汽车等等。

2变频调速技术在电机拖动中的应用

具体来讲,电机拖动包括诸多方面的内容,比如直流电机、电机系统的运动方程以及直流电机的静态特点、动态特点以及变压器等等。我们从控制类别方面来讲,转速开环是卸油泵电动机的变频调速系统,电源变频调速系统则是利用恒压频度比来控制的。在实际的使用过程中,要想控制输出直流电压,主要依据的是电压。

通过速度给定,可以获得整个电力系统中的控制信号,即使在是跳跃变化的情况下,进行速度给定,也可以对逆变器的输出电压以及电流的规律性变化进行协调和控制。因此,我们将给定积分器给设定下来,用斜坡输出信号来替代跳跃输入,这样就可以对电机的正转和反转进行有效的控制。通过实践得知,在整个电机拖动系统运行过程中,利用正负电压来有效划分速度给定以及给定的积分器输出。因为正值的信号电压是控制电流器的输出电压和逆变器的输出频率,那么设置的变换器在绝对值方面,没有较大的差异。通过大量的实践研究表明,变频器系统具有较为广泛的调速范围,并且有着较好的调速平滑性,可以对电机启动时性能进行有效的改善,因此可以有效适用于电机拖动中,此外,也可以广泛应用于船舶电力拖动中。采用的控制信号是一样的,只需要协调输出电压和输出频率,更加理性的认知变频调速技术,就可以在电机拖动中更好的应用变频调速技术。

3变频调速技术的合理应用

一是无功补偿原理的作用:无功补偿装置装设的目的是对供电效率进行提高,对供电环境进行改善,它将两种负荷之间能量交换的原理给充分利用了起来,来对供电变压器和输送线之间的耗损进行补偿,在供电系统中,无功补偿装置是不可获取的一个组成部分;只有合理选择了补偿装置,将其应用于电力系统中,才可以对电网功率因数进行有效的提高,对网络耗损进行最大限度的减少,促使电网质量得到有效提高。

在对无功补偿装置进行选择时,通常是将分组投切的电容器以及电抗器应用过来,在一些特殊情况下,调相机以及静止无功补偿装置也是不错的选择;满足了无功平衡的要求,为了促使电压质量标准的要求得以实现,还需要将调压装置应用过来。要将分层分区以及就地平衡的原则应用到电网的无功补偿中,同时,还需要将变电站的无功调节能力给充分纳入考虑范围,并且将电压优化以及功率因数给大力推广开来,积极的应用先进的技术,如电网无功管理系统软件等等,促使电网质量得到更加好的提高,促使电网更加安全可靠的运行。

二是变频器负载标准:相较于变压器和电动机的发热时间,半导体器件的发热时间往往较小,通常在计算时候都采用的是分钟,如果出现了过载超温问题,将会带来很大的问题。因此,就需要严格规定负载条件。需要对变流器的运行种类进行划分,第一级额定输出为电流完全输出,过载情况不会出现;第二级为可以连续输出基本负载电流,短时过载运行可以达到百分之五十;第三级到第六级过载则需要更长的时间。目前在市场上,一般只对第二级以及第一级进行销售。此外,还需要结合生产机械负载性能和调速范围等要求,来对变频器进行合理选择。

4变频器运行的可靠性

通过大量的调查研究发现,温度会在很大程度上影响到变频器运行的可靠性。如果变频器有着较大的功率,那么往往将空气冷却的方法应用过来,也就是将换气扇合理安装于顶部,这样就可以更好的进行换气,向室外排放柜内的热空气,对不断恶化的装置环境进行有效的改善;因为变频器是完全封闭的,需要控制其内部温度在50摄氏度以下;但是对于南方的夏季,往往比较的炎热,温度通常会在50摄氏度以上,要想保证变频器能够正常可靠的运行,就需要采取一系列的降温设备,如空调等等。但是这些外部设备的应用,虽然在较短的时间内对温度进行降低;却会对正常通风产生影响,并且室内噪声也会得到较大程度的增加,因此这种措施是不够合理和科学的。因此,我们就需要结合具体情况,合理安排空冷的位置,最好将管道式通风装置应用到柜顶,这样就可以向室外直接排放室内的热空气。在一些特殊的情况下,还需要结合具体情况对变频器进行科学选择,并且需要定期经常的维修和保护那些容易出现问题的部位,避免损坏到变频器。

5结束语

通过上文的叙述分析我们可以得知,随着时代的发展和社会经济的进步,社会的电力需求越来越大,电力系统运行的稳定性和安全性将会对人们的日常生活和工作以及国家的长治久安产生直接的影响;针对这种情况,就需要不断的改善和完善电力系统,更好的服务于人们生活和社会发展。通过大量的实践研究表明,将变频调速技术应用到电机拖动中,具有一系列的优势和价值,可以对电力系统的安全稳定运行起到保障作用。相关的工作人员需要不断努力,革新技术,总结经验,将变频调速技术更好的应用到电机拖动中。文章简要分析了电机拖动中变频调速技术的实际应用,希望可以提供一些有价值的参考意见。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

初探起重机电机拖动系统的负载跟踪

在我国科学技术不断发展的今天,各种重型设备的应用性不断增强。起重机作为一种常见的、有效应用的设备,其可以有效的抬起重物,大大节省人力劳动。当然,要实现起重机长期稳定、安全、高效的应用,并不是非常容易的,需要对起重机电机拖动系统的负载跟踪予以合理的设计,有效的控制电机拖动系统,促使电机可以保持相对稳定的状态,为使起重机更好的运行创造条件。对此,本文就起重机电机拖动系统的负载跟踪进行分析和探讨。

引言:

起重机属于起重机械中的一种,其同时也是一种循环间歇运动的机械。对于起重机的应用,主要是将重物提起,将其平移到指定地点后降落物品,紧接着做反向运动,进行下一个重物的运输。起重机整个运作过程中,起重机电机拖动系统发挥巨大作用,其直接决定起重机能否将重物提起,并稳定的放在指定位置。当然,起重机电机拖动系统在具体运用的过程中容易受某些因素的影响,促使电机拖动系统运行不稳定,并且浪费电能。所以,加强起重机电机拖动系统的负载跟踪进行设计,有效的控制电机拖动系统,可以提升起重机电机拖动系统应用性。本文将从起重机电机拖动系统的力学方程分析展开,系统的探究起重机电机拖动系统的负载跟踪设计。

一、起重机电机拖动系统的动力学方程分析

对于起重机电机拖动系统的动力学方程的分析,需要结合起重机起升机构电机拖动系统图,依据相关的动力学原理,科学地、合理地分析,才能够详细地掌握整个起重机电机拖动系统的动力学方程,为后续准确的分析。设计起重机电机拖动系统的负载跟踪提供条件。对此,本文笔者参照某型号起重机起升机构电机拖动系统示意图(如图一所示),展开具体的分析。从图一可以知道分别为中间轴、卷筒、滑轮的传统效率。假设为起重机吊重物起升的速度、为起重机所吊重物的质量、为起重机吊具的质量、为起重机电机转子转动惯量、为制动轮和联轴器的转动惯量。根据动力学相关理论,可以得到关于起重机吊具上钢丝绳张力的公式,即:

在对起重机吊具上钢丝绳张力进行公式计算的过程中,因为是以动力学相关理论为基础,所以本文仅考虑吊具在提重物上升过程中所消耗的电能,对于其他因素所引起的能量消耗在此予以忽视。

二、起重机电机拖动系统的负载跟踪设计

综合上文起重机电机拖动系统的动力学方程式,对于起重机电机拖动系统的负载跟踪的设计主要是利用坐标轴分析的,这可以更为直接的分析电机拖动系统的负载跟踪,为实现起重机电机拖动系统可以稳定、有效应用创造条件。

对于起重机电机拖动系统的负载跟踪的设计,首先设计电机静止正交坐标系与旋转坐标系(如图三所示)。假设电机静止正交坐标系和以定子同步角速度,旋转得到两相旋转正交坐标系MOT,其中M轴与轴夹角为,且。那么,TM坐标系上电机转子磁链的矢量,将会与M轴某一点相交,从而可以实现整个系统的同步旋转。另外,由于在起重机电机拖动系统持续运作的过程中,电机转子磁链的矢量将会一直同M轴相交,这就意味着,转子磁链值与电子转子磁链矢量相等。

利用以上内容完成整个起重机电机拖动系统的负载跟踪设计。为了可以更加准确的、有效的、合理的、科学的完成起重机电机拖动系统的负载跟踪设计,笔者在此引入基于转差角频率的矢量变频控制系统原理图(如图四所示)。从转差角频率的矢量变频控制系统原理图可以了解电机转速计算中,需要运用到转速调节器对定子电流转矩分量予以计算,进而了解MT坐标系的同步旋转角速度。综合以上同步旋转角速度函数公式,以及起重机电机拖动系统实际情况,可以了解整个系统负载跟踪的应用需求。而积分器的因公可以测量出转角频率的矢量的变换角。利用矢量变换角可以得到电压励磁分量和转矩分量,相应的可以利用电压型逆变器对电压进行控制,从而实现起重机电机拖动系统的有效控制,促使电机稳定、安全、有效的运用。

结束语:

起重机电机拖动系统负载跟踪的设计是非常必要的,可以保证电机拖动系统相对稳定的运行,有效的节约电能。从起重机电机拖动系统负载跟踪控制的特点来看,电动机转子容易受到某些因素的影响。所以,在具体设计起重机电机拖动系统负载跟踪过程中,需要分析起重机电机拖动系统的动力学方程,了解转子电压、电流与磁链之间的关系。以此为依据构建电机静止正交坐标系与旋转坐标系,对电动机转子运作中负载转矩、定转速度等方面进行分析,从而科学、合理设计电机拖动系统负载跟踪,为保证起重机电机拖动系统稳定运作创造条件。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接