工业伺服节能改造,关于压铸机怎样节电信息聚合页,专注于压铸机怎样节电:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
节能改造关注问答
1、

我国多种高效节能电机的发展状况

“十二五”国家战略性新兴产业发展规划已明确将节能环保、新一代信息技术、生物、高端装备制造、新能源、新材料、新能源汽车作为战略性新兴产业。电机系统与战略性新兴产业的发展密切相关,发展高效节能电机及拖动设备是节能环保产业的重要内容之一。伺服电机及其控制系统在数控机床、工业机器人中的应用是高端装备制造产业的基础。大型风电机组、核电电机的研发与制造是新能源产业的重点。高性能电池、驱动电机与控制技术是电动汽车产业发展的关键。

YE4系列超超高效三相异步电动机

2010年4月IEC启动了对IEC60034-30标准的修订工作,决定将IEC60034-30标准分为2个标准,IEC60034-30-1《在线运行交流电机能效分级(IE代码)》和IEC60034-30-2《变速交流电机能效分级(IE代码)》。IEC60034-30-1已经于2014年3月发布,与IEC60034-30相比,主要变化如下:

(1)电机的效率分为IE1、IE2、IE3、IE4、IE5级,IE5效率最高,IE1效率最低;

(2)延伸了功率范围,从0.75~375kW延伸为0.12~1000kW;

(3)扩大了极数范围,从2P、4P、6P扩大到2P~8P;

(4)扩大了电机种类,从单速三相笼型感应电动机扩大到所有在线运行的交流电机;

(5)环境运行温度为-20℃~+60℃。高效率电机的开发仍然是今后电机技术发展的方向之一,为了填补我国GB18613—2012标准中1级能效电机产品的空白,同时也为了配合国家实施能效“领跑者”计划,有必要开展IE4效率电机的研发,以满足今后国内及出口高效电机市场的需要。

总体目标是完成IE4超超高效系列产品设计,并制订产品技术条件。系列产品机座号:H80~H355;功率范围为0.75~355kW;极数为2,4,6,8极;效率平均值为95%,比普通产品高6%。

超高速三相永磁同步电动机

(1)开发超高速三相永磁同步电动机的必要性:填补国内空白,引领电机行业技术进步;促进高端装备制造的国产化,提升我国高端装备制造业水平;促进电机配套材料(硅钢片、电磁线、绝缘)、电力电子(磁悬浮轴承、变频控制器)等行业的发展;大容量、超高速电机的推广应用具有显着的节能减排效益。(2)产品开发阶段目标:先针对离心压缩机在制冷、气体输送等领域的应用,开发配套用超高速三相永磁同步电动机,功率范围10~300kW,转速范围1000~50000r/min。将超高速电机设计、制造与测试技术向机床主轴电机、微燃发电、高速储能等领域扩展。

低速大转矩永磁同步电动机

低速大转矩一般是指转速<500r/min,额定输出转矩>500N˙m的传动系统。这样的传动系统在许多工业传动领域中常见(如球磨机驱动系统属于典型的低速大转矩传动系统),此外还包括油田机械、矿山机械及塑料机械等。

目前,此类设备仍然采用传统的电机加减速机的驱动模式,由于减速机齿轮等机械原因降低了系统的整体传动效率。永磁电机可以实现低速大转矩直驱运行,该特性使得永磁电机在低速大转矩的传动系统中的应用前景非常广阔。低速大转矩永磁电机应用于球磨机,可去除减速机、直驱小齿轮与传动部的大齿轮啮合,实现球磨机可靠运转,系统节能10%以上。

产品开发的阶段目标如下:(1)完成球磨机配套专用电机的开发,电机功率范围为2.2~400kW,转速范围为10~60r/min。(2)开发提升机、皮带机、螺杆泵、抽油机等设备专用的低速大转矩永磁同步电动机。(3)制订球磨机等设备专用的低速大转矩永磁同步电动机产品标准。

高性能永磁伺服电机系统

2005年以来,我国交流伺服电机市场进入高速发展期,年增长率超过25%;2011年市场容量60多亿元,预计2015年可达150亿元。但目前国内伺服电机系统总体技术水平比较落后,日、欧、美伺服产品完全占据国内高端伺服市场,国内伺服产品只能在中低端领域竞争。国内交流伺服电机市场份额的前四名均被外资品牌占据,2011年外资品牌市场份额近80%,国内品牌市场份额只有近20%,特别是大功率交流永磁伺服系统,基本上被国外产品垄断。目前,交流伺服电机系统应用最多的领域是机床,约占25%,纺织机械占20%、包装机械占10%、印刷机械占7%;国家政策支持中高档数控机床产业化发展,高档数控机床已列入国家科技发展重大专项;进行机床用高性能永磁伺服电机系统的技术研究及产业化,带动伺服电机系统朝着高精度、高性能、快响应的方向发展,对提高我国装备制造的整体水平有重要意义。

产品开发阶段目标如下:(1)完成数控机床进给伺服系统的研究与产品开发,电机功率范围为3~15kW,性能水平与国外同类产品相当;完成永磁伺服驱动系统在数控机床上的应用示范。(2)完成永磁伺服驱动系统在纺织机械、包装机械、印刷机械等设备上的应用研究与典型规格产品开发。(3)制订部分设备专用的永磁伺服电机产品标准。

永磁同步磁阻电动机

永磁同步磁阻电动机综合了永磁同步电动机和开关磁阻电动机的特点,具有效率高、功率因数高、功率密度高、调速范围宽等优点。目前在汽车驱动电机上应用较多,需要进一步拓展永磁同步磁阻电动机在工业领域中的应用,开发永磁同步磁阻电动机系列产品。产品开发阶段目标为开发无稀土同步磁阻永磁电机系列产品,效率达到IE3(超高效)能效水平,同时成本与YE3系列三相异步电动机相当,能够替代风机、水泵和压缩机配套的变频调速三相异步电动机。系列产品功率范围为0.55~315kW;机座号为H80~H355;极数为4极;标称转速为3000r/min;调速范围100~5000r/min。

结语

“十二五”国家战略性新兴产业发展规划已明确将节能环保、新一代信息技术、生物、高端装备制造、新能源、新材料、新能源汽车作为战略性新兴产业。电机系统与战略性新兴产业的发展密切相关,发展高效节能电机及拖动设备是节能环保产业的重要内容之一。伺服电机及其控制系统在数控机床、工业机器人中的应用是高端装备制造产业的基础。大型风电机组、核电电机的研发与制造是新能源产业的重点。高性能电池、驱动电机与控制技术是电动汽车产业发展的关键。电机及系统技术的研究和产品开发要与我国战略性新兴产业的发展需求相结合,通过节能环保、高端装备制造、新能源、新能源汽车等重点领域的新产品开发,解决电机在设计、制造、测试、应用等方面的关键技术难题,从而推动电机技术的进步和电机行业的发展。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

推进电机节能的意义是什么

电机是一种应用量大、使用范围广的高耗能动力设备。据统计,我国电机耗电约占工业用电总量的60%~70%。实际应用中,我国电机的整体运行状况,同国外相比差距很大,机组效率约为75%,比国外低10%左右;系统运行效率为30~40%,比国际先进水平低20~30%。因此,我国的电机应用具有极大的节能潜力,推行电机节能势在必行。

一、目前电机能耗状况

改革开放20多年来,我国在能源利用上取得“GDP翻两番,而能源消费仅翻一番”的成就。但是,与发达国家相比,我国电力能源利用效率仍然较低,尤其是工业用电设备电能消耗高,浪费情况较为严重。大量的工业设备如风机、泵类设备以及传统的工业缝纫机、机械加工设备等,多采用交流电动机恒速传动的方案运行,导致交流电动机效率普遍较低。

风机、泵类设备也多采用调节风门和阀门的办法来调节流量,这种调节方法虽然简单易行,但它是以耗费大量能源为代价;在工业缝纫机、机械加工设备中,往往采用离合器、摩擦片调节速度,造成大量的待机损耗和制动能耗。

1.风机、泵类设备

在工业生产、产品加工制造业中,风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,不能随运行工况的变化进行相应的调节,白白浪费了大量的能量。在生产过程中,不仅控制精度受到限制,而且容易造成设备损耗,从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用居高不下。

泵类设备在生产领域同样有着广阔的应用空间,提水泵站、水池储罐给排系统、工业水(油)循环系统、热交换系统均使用离心泵、轴流泵、齿轮泵、柱塞泵等设备。根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏;还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备、影响生产、危及产品质量。

2.工业缝纫机、机械加工设备

传统的工业缝纫机电机是一款交流离合器电机,效率仅为40~50%;电机在工作时,不论缝制布料厚薄,始终全功率输出;在缝纫机待料待机时,电机通过离合器脱开负载,继续空载运行,造成极大的待机损耗。

在中低档机械加工设备中往往采用摩擦片调节速度,利用摩擦片的摩擦作用降低电机转速,从而达到调节速度的目的,不仅造成大量的制动能耗,还加快了电机轴的磨损,降低电机使用寿命。

目前,我国在家电行业已逐步采用变频调速控制技术以降低能耗,而工业控制领域中的许多速度调节方法还停留在传统技术层面上。根据美国能源部的一项数据显示,如果采用最新的高效率电机设备和一定的变频调速装置来替代旧的电机设备,工业用户至少能在现有基础上节省电能18%以上。

目前,许多国家均已指定流量压力控制必须采用变频调速装置取代传统方式,我国也在积极鼓励工业企业采用高效、节能的电动机、锅炉、窑炉、风机、泵类等设备。

二、以电子信息技术改造传统产业,达到节能降耗目的

随着电子技术、信息技术的发展,电子信息技术在产品中的应用日趋成熟,传统的电机技术与电子信息技术相结合,产生了“机电一体化”产品。“机电一体化”又称“机械电子学”,是在机构的主功能、动力功能、信息处理功能和控制功能上引进了电子技术,并将机械装置、电子设备以及软件等有机地结合起来构成的系统的总称。“机电一体化”电机与传统电机有着质的区别,“机电一体化”电机包含了控制部分既控制器及嵌入式软件和驱动部分既电机,它是利用嵌入式软件实现对系统的智能化模糊控制。这种智能化模糊控制不仅能有效提高系统的运行精度,而且可以根据系统负载变化实时调整电机输出转速、输出功率,充分达到节能降耗的目的。下面举两个例子来说明“机电一体化”电机的使用效果:

1.高效节能伺服控制电机在工业缝纫机领域的应用

前面提到传统的工业缝纫机电机是一款交流离合器电机,效率仅为40~50%;电机在工作时,不论缝制布料厚薄,始终全功率输出;在缝纫机待料待机时,电机通过离合器脱开负载,继续空载运行,造成极大的待机损耗。而高效节能伺服控制电机采用直流无刷电机作为驱动元件,效率达到70~80%;伺服控制系统内含嵌入式软件,系统随时检测缝制布料的厚薄,将信息实时传递给嵌入式软件,通过软件调节电机的输出转速和输出功率,始终使电机工作在最合理、最节能状态;在缝纫机待料待机时,系统停止工作,没有待机损耗。通过高效节能伺服控制电机替代交流离合器电机在工业缝纫机领域推广应用,可在该领域节能50~60%,每台缝纫机可节电576千瓦时/年,据缝纫机行业协会估算,全国现在生产使用的工业缝纫机至少200万台,那么随着高效节能伺服控制电机的替代使用,可为社会节电11.52亿千瓦时/年。

高效节能伺服控制电机不仅可以在缝纫机行业推广应用,也可以在工业集尘设备、机械加工设备中替代传统的交流电机,其节电效果普遍达到30%以上。

2.变频调速电机在风机、泵类设备中的应用

风机、泵类设备年耗电量占全国电力消耗的1/4,大量的电能由于交流电动机只能恒速输出、无法根据工况变化自行调节而浪费。变频调速技术是20世纪80年代末兴起的一种新型电力传动调速技术,它以体积小、重量轻、转矩大、精度高、功能强,可靠性高,操作简便,便于通信等功能优于以往的传统调速方式(如变极调速、调压调速、滑差调速等)。变频调速运行,是根据负载转速的变化要求,改变供电电流的频率,并配合电压的调节,以获得合理的电机运行工况。在不同的转速情况下,均保持较高的运行效率。变频控制技术的应用,不仅降低了电能消耗,同时能改善启动性能,保护电动机及负载设备免受瞬时启动的冲击,延长其工作寿命,还提高电动机及负载设备的工作精确度。

风机、泵类等设备采用变频调速技术实现节能运行是我国节能的一项重点推广技术,受到国家政府的普遍重视,《中华人民共和国节约能源法》把它列为通用技术加以推广。实践证明,变频电机用于风机、泵类设备驱动控制场合取得了显着的节电效果,普遍节电达到30%~50%。

三、电机节能的远景目标和发展方向

随着电子信息技术的发展,电机节能的前景十分看好。据国家能源部的初步估算:如果全面启动电机节能工程,推广变频调速、永磁调速等先进电机调速技术,改善风机、泵类电机系统调节方式,逐步淘汰闸板、阀门等机械节流调节方式,全国的用电量将下降15~20%而GDP保持不变。

通过研发高效节能的变频调速技术,在工业、交通、办公自动化等领域推广使用,将电机的平均能耗下降20~30%,这是电机行业“十一五”期间的节能目标。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

发电机节能运行技术浅析

一、发电机运行中功率因数过高或过低造成的危害

发电机额定功率因数过高实际上是指当发电机同时在额定有功功率和额定视在功率运行工况(一般在滞相方式)下运行时的功率因数值,同样的额定有功功率机组,如果其额定功率因数越低,则说明运行时带无功的能力相对较强,机组额定电流也增加,从而使造价增加。

一般发电机额定功率因数均为0.9左右。

发电机运行中,从理论上讲,在同样的机端电压下,如果在同样的有功出力下,功率因数越高,那么所发的无功越少,发电机电势就越低,发电机的静态运行稳定水平下降。

发电机运行中,如果要降低功率因数至额定值以下,则必须降低其有功出力,以使定子和转子电流不超限,既不经济,又不安全。这种运行方式往往在当系统发生事故,无功缺额较为严重,要求发电机减发有功增发无功时出现。

二、发电机定子冷却水系统与发电机经济运行的关系

发电机冷却水系统主要是向发电机的定子绕组和引出线不间断提供水源。其优点是水热容量大,有很高的导热性能和冷却能力,水的化学性能稳定,在高温下不会燃烧,调节也方便,冷却均匀等。

发电机定子的冷却水必须具有很高的工作可靠性,否则会使发电机组降低负荷运行,严重时危害发电机正常运行。因此,对冷却水的质量有较高的要求,很低的机械杂质,电导率不大于2vs/em、PH值在7~8之间、硬度不大于2vg当量/L、含氧量尽可能减少。

三、火力发电机增容改造有哪些途径

1、提高定子线及转子绕匝间等绝缘强度。经发电机绝缘鉴定,其机械性能和介电性能变坏,电气强度降低的发动机当需要更换上、下层定子线棒时(温度计算实验决定),可将定子线棒的绝缘材料由原B级绝缘改为F级,其线槽部换为绝缘用浸漆的适型材料,加强绝缘及黏结。线棒绝缘包扎采用以提高线棒的绝缘质量,提高转子集电环及引线、槽绝缘、排间绝缘、楔厂,垫条、大护环绝缘等。

2、交换定子线棒,增大铜线截面积。经发电机温升计算和实验,定转子绕组铁心温度裕度不够,以及为提高发电机效率、降低定子绕组的线电流密度、进一步降低定子铜耗,可更换定子全部上、下层定子线棒,参照引进技术同级电压绝缘厚度增大铜线截面积。

3、发电机加装铜屏蔽及管道水冷却,降低端部损耗,降低端部主要结构件温度。

4、其他有缺陷的部件改造。

四、提高氢冷发电机的某些参数可以提高发电机效率

氢气压力越高,氢气密度就越大,其导热能力就越高,因此,在发电机各部位温升不变的情况下,能够散发出更多的热量,发电机的效率就可以提高。特别是对氢内冷发动机效率更明显。

氢气的纯度过高,则发电机消耗的氢气量越大,越不经济。但是,氢气纯度过低,会因为含氢量减少而使混合气体的安全系数降低。因此,氢气的纯度按容积计算需保持在96%~98%,气体的混合物中含氧量不超过2%。

氢气的湿度是影响发电机绝缘的主要因素,氢气湿度越大,越使发电机绝缘强度降低,使发电机绝缘不达标,影响发电机正常运行,严重时使匝间短路而损坏发电机。

五、影响补氢率的主要因素

补氢率是指为维持氢冷发电机运行氢压需每天补充的氢量。

1、发电机内冷水系统泄漏,氢漏入内冷水中;

2、发电机密封油油压低、氢油分离设备失灵,氢进入油系统;

3、氢压表管堵塞或表计失灵;

4、发电机端盖、出线密封(密封母线)不良;

5、氢系统管道、阀门、仪表接头等处外漏;

6、发电机氢系统补氢阀等阀门不严,造成内漏。

六、降低补氢率的措施

1、大修后或进行消除漏氢缺陷工作的发电机,启动前应进行整体气密性实验,实验持续24h(特殊情况不少于12h)。气密性实验最大允许漏氢量应符合标准或生产厂家技术要求。

2、发电机实际漏氢量应每月定期测试一次。测试计算方法执行国家电力公司标准《汽轮发电机运行规程》(1999年版)。

3、用检漏仪器或其他方法查找漏氢点,设法消除。当密封母线内含氢量超过1%时,应立即停机查漏。当发电机轴承油系统或主油箱内氨气体积含量超过1%时,应立即停机查漏。当内冷水系统出现氨气时,应尽快安排停机处理。

4、保持发电机密封油油压高于氨压在规定运行范围内,否则应降低氨压运行。

5、发电机氨系统补氨阀等阀门不严造成内漏时,应设法消除。

七、低电压对经济和安全运行的危害

1、烧毁电电机。电压过低超过10%,将使电动机电流增大,线圈温度升高,严重时使机械设备停止运转或无法启动,甚至烧毁电动机;

2、灯发暗。电压降低5%,普通点灯的照度下降18%;电压下降10%,照度下降35%;电压降低20%。则日光灯无法启动;

3、增大线损。在输送一定电力时,电压降低,电流相应增大,引起线损增大;

4、降低电力系统的静态及暂态稳定性。由于电压降低,相应降低线路输送极限容量,因而降低了稳定性,电压过低可能发生电压崩溃事故;

5、发电机出力降低。如果电压降低超过5%,则发电机出力也要相应降低;

6、影响电压的稳定性。如果区域性无功补偿不足,无功的缺额只能由电压降低来补偿,导致无功缺额越来越大,电压越来越低,直至崩溃。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


4、

电机与电力拖动在经济中的作用与发展趋势

在工农业中,国防事业和人们的日常生活中,电能是最重要的能源之一。电机在日常生活中起着重要作用,在电机中,电机碳刷,电机滑环是不可缺少的。与其他能源相比,电能具有转换经济、传输和分配容易、使用和控制方便等优点外。

自然界中不存在可以直接使用的电源,电能通常是由其他形式的能量转换而来的。其中将机械能转换为电能的装置就是发电机。

我们碳刷、滑环厂家以为电能的传输和分配离不开变压器。发电厂的碳刷质量十分重要,发电厂发出的电能通过电力网应能够实现远距离传输,一般碳刷发电机传输的电压为10-20KV,为了实现远距离传输、减少传输损耗,常用变压器将发电机发出的电压升高至110KV/220KV/330KV/500KV,甚至更高。

输送到用电地区后,要经过变压器将至用户能承受的数值,才能供用户使用。

电能的利用就是将电能转换为其他形式的能量。利用电动机将电能转换为机械能,拖动生产机械工作是电能利用的一个重要方面。用电动机拖动生产机械所组成的系统称为电力拖动系统。电力拖动系统具有以下几个优点:传动效率高、运行经济;电动机种类和规格繁多,具有良好的特性,能满足不同机械的需要;电力拖动系统操作和控制方便,能实现自动控制和远距离控制。

在现代工业企业中,几乎所有生产机械都是由电动机拖动的,如各种机床、生产线、风机、水泵等。可以毫不夸张的说,没有电动机、没有电力拖动技术,就没有现代化工业。

迄今为止,世界上几乎所有的电能是有同步发电机发出来的,发电机生产的大部分电能是通过电动机消耗的。因此,电机和电力拖动技术在国民经济中具有极其重要的作用。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

基于MCF51EM256的智能电动机保护器的设计及应用

采用Freescale公司Coldfire-V0架构内核的32位处理器MCF51EM256芯片,设计了一款高性能的ARD2L智能电动机保护器,并对该保护器的硬件和软件设计方案进行详细介绍。该保护器集众多保护功能于一体,提高了电动机运行的可靠性,减少了因电动机运行故障带来的经济损失。

引言

现代工矿企业中,以电动机作为动力的比例占全部动力的90%以上,它们已是当今生产活动和日常生活中最主要的原动力和驱动装置[1,2],为此检测与保护电动机的正常运行有着非常重要的意义。保护器经历了热继电器、熔断器、电磁式电流继电器、模拟电子式电机保护器,最后发展到数字电子式电机保护器即当今的智能电机保护器。本文设计了一款针对电动机在运行过程中出现的起动超时、过载、欠载、短路、断相、不平衡、接地/漏电、堵转、阻塞、外部故障等情况进行保护的ARD2L智能电动机保护器(以下简称ARD2L),可有效提高电动机运行的安全性,降低生产损失,是传统热继电器的理想替代品[3]。

1硬件设计

ARD2L的硬件电路包括主控芯片MCU,频率信号、电流信号、零序电流信号采集电路,开关量输入模块,继电器输出模块,变送输出模块,RS-485通讯接口,人机交互单元(状态指示灯、数码管/液晶显示),硬件电路框图如图1所示。

1.1主控芯片

MCU芯片采用freescale公司的Coldfire-V0架构内核的32位处理器MCF51EM256,时钟频率最高可达50.33MHz,内置256K的Flash、16K的RAM、4个独立16位A/D通道、3路定时器、3路SCI通讯接口以及内置RTC时钟、I2C、SPI、KBI接口等多种资源,具有极高的性价比。

1.2电源

电源是设备能否正常、稳定、可靠工作的关键部分,ARD2L采用安科瑞的通用开关电源模块。该模块输入电压为AC85V~265V,输入频率45Hz~60Hz,具有多路隔离电压输出,满足多种功能对不同供电电压的要求。其输出电压稳定、故障率小,输出纹波<1%;电源输入部分设计加入压热敏电阻、TVS管、防反接二极管等器件,对过压、过流等有一定的保护作用,同时能使产品通过严酷的EMC测试。该模块经现场实际使用,具有很高的稳定性、可靠性和抗干扰能力[4]。

1.3信号采集电路

信号采集电路负责采集电流信号、频率信号和零序电流信号。其中,电流信号采用互感器隔离输入,将交流信号抬高后送入CPU进行软件差分运算,电流采样电路如图2所示。以A相6.3A规格为例,采用的电流互感器变比为100A:20mA,5P10保护型。该方案电流测量在1.2倍范围内达到0.5S精度,在8倍范围内满足5S精度,而其过载能力按8倍计算,即给互感器加上50.4A电流,通过取样电阻R1的电流为10.08mA,两端电压为0.886V。同时,给采样信号抬高电压UREF=1.2V,使交流信号的幅值大于零,便于A/D采样;在电路的输出端加入限压二极管,使输入电压限制在3.3V以下,能对A/D采样通道起到很好的保护作用。

频率采样电路如图3所示。该电路采用MCP6002双运放进行两级放大,初级放大倍数较小,且在初级与次级之间进行滤波处理,次级运放将交流信号整形为方波信号,通过边沿触发方式捕捉,然后在CPU内部计算测量频率。

1.4人机交互界面

人机交互界面的显示采用数码管或液晶两,用户可以根据实际需要选择显示方式,输入采用按键方式。其中,数码管显示采用动态扫描方式,其驱动电路采用74HC595和三极管构成;液晶显示采用拓普威公司LM12832BCW的128点阵中文液晶,其数据传输采用SPI串口,可极大地节省CPU资源。同时,LED和LCD显示采用同一个SPI接口控制,使得两种显示方式可以通用。

1.5控制模块

控制模块主要由开关量输入、输出组成,如图4所示。其中,开关量输入用于监测断路器、接触器的开关状态和采集现场的工业联锁状态,也可根据客户要求用于电动机的起停控制;开关量输出主要用于输出脱扣信号、报警信号和远程起/停信号。

1.6通讯/变送模块

通讯模块采用RS-485模块ModbusRTU通讯规约,能实现遥测、遥控、遥信等功能。而变送是将我们需要的电流信号转换为DC4~20mA模拟量输出,方便与PLC、PC等控制机组成网络系统,实现电动机运行的远程监控。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

电机拖动中变频调速技术的实际应用分析

随着时代的进步和社会经济的发展,我国电力系统发展迅速,工业化程度的提高和城市化进程的加快,促使电力资源在国民经济发展中发挥着越来越大的作用。在对一个国家经济发展水平进行衡量时,电气化程度也被作为一个很重要的衡量指标。文章简要分析了电机拖动中变频调速技术的实际应用,希望可以提供一些有价值的参考意见。

电力系统的安全稳定运行,会对人们的日常工作生活以及社会经济的发展产生直接影响,因此,相关部门越来越重视电力系统的安全和可靠运行。随着科学技术的不断发展,变频调速技术得到了飞速发展和普遍应用,将其应用到电机拖动中,具有一系列的优势和价值。

1变频调速技术概述

具体来讲,变频调速技术指的是依据电机转速会直接受到工作电源输入频率的影响关系,通过对电动机工作电源频率进行改变,而对电机转速进行适当调整。随着科学技术的发展,如今在我国的日常生活和工作中,已经开始广泛的应用变频调速技术。目前,已经出现了诸多的变频调速控制方式,如直接转矩控制、矢量控制等等。数字控制技术的发展以及半导体技术的普遍应用,不仅在高性能范围内开始应用矢量控制,在驱动领域以及专用驱动领域内也开始广泛应用矢量控制,并且在人们日常生活的家用电器中也开始广泛应用,如变频空调、冰箱等等。此外,在一些其他的领域内也开始应用交流驱动器,如工业机器、电动汽车等等。

2变频调速技术在电机拖动中的应用

具体来讲,电机拖动包括诸多方面的内容,比如直流电机、电机系统的运动方程以及直流电机的静态特点、动态特点以及变压器等等。我们从控制类别方面来讲,转速开环是卸油泵电动机的变频调速系统,电源变频调速系统则是利用恒压频度比来控制的。在实际的使用过程中,要想控制输出直流电压,主要依据的是电压。

通过速度给定,可以获得整个电力系统中的控制信号,即使在是跳跃变化的情况下,进行速度给定,也可以对逆变器的输出电压以及电流的规律性变化进行协调和控制。因此,我们将给定积分器给设定下来,用斜坡输出信号来替代跳跃输入,这样就可以对电机的正转和反转进行有效的控制。通过实践得知,在整个电机拖动系统运行过程中,利用正负电压来有效划分速度给定以及给定的积分器输出。因为正值的信号电压是控制电流器的输出电压和逆变器的输出频率,那么设置的变换器在绝对值方面,没有较大的差异。通过大量的实践研究表明,变频器系统具有较为广泛的调速范围,并且有着较好的调速平滑性,可以对电机启动时性能进行有效的改善,因此可以有效适用于电机拖动中,此外,也可以广泛应用于船舶电力拖动中。采用的控制信号是一样的,只需要协调输出电压和输出频率,更加理性的认知变频调速技术,就可以在电机拖动中更好的应用变频调速技术。

3变频调速技术的合理应用

一是无功补偿原理的作用:无功补偿装置装设的目的是对供电效率进行提高,对供电环境进行改善,它将两种负荷之间能量交换的原理给充分利用了起来,来对供电变压器和输送线之间的耗损进行补偿,在供电系统中,无功补偿装置是不可获取的一个组成部分;只有合理选择了补偿装置,将其应用于电力系统中,才可以对电网功率因数进行有效的提高,对网络耗损进行最大限度的减少,促使电网质量得到有效提高。

在对无功补偿装置进行选择时,通常是将分组投切的电容器以及电抗器应用过来,在一些特殊情况下,调相机以及静止无功补偿装置也是不错的选择;满足了无功平衡的要求,为了促使电压质量标准的要求得以实现,还需要将调压装置应用过来。要将分层分区以及就地平衡的原则应用到电网的无功补偿中,同时,还需要将变电站的无功调节能力给充分纳入考虑范围,并且将电压优化以及功率因数给大力推广开来,积极的应用先进的技术,如电网无功管理系统软件等等,促使电网质量得到更加好的提高,促使电网更加安全可靠的运行。

二是变频器负载标准:相较于变压器和电动机的发热时间,半导体器件的发热时间往往较小,通常在计算时候都采用的是分钟,如果出现了过载超温问题,将会带来很大的问题。因此,就需要严格规定负载条件。需要对变流器的运行种类进行划分,第一级额定输出为电流完全输出,过载情况不会出现;第二级为可以连续输出基本负载电流,短时过载运行可以达到百分之五十;第三级到第六级过载则需要更长的时间。目前在市场上,一般只对第二级以及第一级进行销售。此外,还需要结合生产机械负载性能和调速范围等要求,来对变频器进行合理选择。

4变频器运行的可靠性

通过大量的调查研究发现,温度会在很大程度上影响到变频器运行的可靠性。如果变频器有着较大的功率,那么往往将空气冷却的方法应用过来,也就是将换气扇合理安装于顶部,这样就可以更好的进行换气,向室外排放柜内的热空气,对不断恶化的装置环境进行有效的改善;因为变频器是完全封闭的,需要控制其内部温度在50摄氏度以下;但是对于南方的夏季,往往比较的炎热,温度通常会在50摄氏度以上,要想保证变频器能够正常可靠的运行,就需要采取一系列的降温设备,如空调等等。但是这些外部设备的应用,虽然在较短的时间内对温度进行降低;却会对正常通风产生影响,并且室内噪声也会得到较大程度的增加,因此这种措施是不够合理和科学的。因此,我们就需要结合具体情况,合理安排空冷的位置,最好将管道式通风装置应用到柜顶,这样就可以向室外直接排放室内的热空气。在一些特殊的情况下,还需要结合具体情况对变频器进行科学选择,并且需要定期经常的维修和保护那些容易出现问题的部位,避免损坏到变频器。

5结束语

通过上文的叙述分析我们可以得知,随着时代的发展和社会经济的进步,社会的电力需求越来越大,电力系统运行的稳定性和安全性将会对人们的日常生活和工作以及国家的长治久安产生直接的影响;针对这种情况,就需要不断的改善和完善电力系统,更好的服务于人们生活和社会发展。通过大量的实践研究表明,将变频调速技术应用到电机拖动中,具有一系列的优势和价值,可以对电力系统的安全稳定运行起到保障作用。相关的工作人员需要不断努力,革新技术,总结经验,将变频调速技术更好的应用到电机拖动中。文章简要分析了电机拖动中变频调速技术的实际应用,希望可以提供一些有价值的参考意见。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

电力拖动控制线路的故障分析

近年来,随着电子技术和控制理论的不断发展,相续出现了顺序控制,可编程无触点断续控制,采样控制等多种控制方式。由于电力在生产,传输,分配,使用和控制方面的优越性,使得电力拖动具有方便,经济,效率高,调节性能好,易于实现生产过程自动化等优点,所以电力拖动控制线路系统获得了广泛的应用。电力拖动控制线路常发生的故障主要分为硬故障、软故障和间歇性故障。本文首先介绍了现阶段电力拖动控制线路的发展情况,从应用重点、方式方法和具体分类等方面进行了具体介绍,论文的重点以电力拖动设备的控制线路为主要研究对象,针对上述三种故障原理进行具体的故障测量分析方法,并重点就电阻测量分析法进行了具体分析,给出了在进行故障分析时所需要注意的事项,为电力拖动控制线路的实际控制提供了理论依据。

电力拖动控制线路是用来控制电动机的运转的部件,其由各种控制电动机,电器,自动化元件及工业控制计算机组成,电动机是生产机械的原动机,将电能转化成机械能,分为交流电动机和直流电动机。传动机构是在电动机和工作机构之间传送动力的机构,如速箱,联轴器,传动器等。按电动机拖动系统中电动机的组合数量分,电力拖动的发展过程经历了成组拖动,单电动机拖动和多电动机拖动三个阶段。从电力拖动的控制方式来分,可分为断续控制系统和连续控制系统两种,在电力拖动发展的不同阶段两种拖动方式占有不同的地位,且呈现交替发展的趋势。

随着电力拖动的出现,最早产生的是手动控制电器控制电动机运转的手动断续控制方式,随后逐步发展为有继电器,由接触器等组成的继电接触式有触点断续控制方式。这种控制系统结构简单,工作稳定成本低且维护方便,不仅可以方便地实现生产过程自动化,而且可实现集中控制和远距离控制,所以目前生产机械仍广泛使用。但这种控制仅有通和断,这两种状态,其控制是断续的,即只能控制信号的有无,而不能连续控制信号的变化。为了适应控制信号连续变化的场合,又出现了直流电动机连续控制。这种控制方式可充分利用直流电动机调逮性能好的优点,得到高精度,宽度范围的平滑调速系统。

本文首先介绍了现阶段电力拖动控制线路的发展情况,从应用重点、方式方法和具体分类等方面进行了具体介绍,论文的重点以电力拖动设备的控制线路为主要研究对象,针对上述三种故障原理进行具体的故障测量分析方法,并重点就电阻测量分析法进行了具体分析,给出了在进行故障分析时所需要注意的事项,为电力拖动控制线路的实际控制提供了理论依据。

电力拖动控制线路常发生的故障主要分为硬故障、软故障和间歇性故障。其中硬故障又称突变故障,包括电动机、电器元件或导线显着的发热、冒烟、散发焦臭味、有火花等故障,多是过载、短路、接地、从而击穿绝缘层烧坏绕组或导线等原因造成的。而软故障又称渐变故障,除部分由于电源、电动机和制动器等出现问题外,多数是控制电器问题,如电器元件调整不当、机械动作失灵、触头及压接线头接触不良或脱落等。间歇性故障是由于元件的老化,容差不足、接触不良因素造成,仅在某些情况下才表现出来的故障。

判断故障范围的方法主要有排除法和逻辑分析法,但是这些方法的应用在高速发展的电机设备中已经不能完全满足。本文以电力拖动设备的控制线路为主要对象,针对不同的故障原理进行具体的故障分析,并重点就电阻测量分析法进行了具体分析。

在电动机控制线路工作中,同一个故障现象的出现可能是由不同的原因造成的,故障点的最终确定需要借助一定的工具,在熟悉原理图的基础上,采用合理法如下:

(1)用试验法观察故障现象,结合原理图初步判定故障范围

试验法是在不扩大故障范围,不损坏电气设备和机械设备的前提下,对线路进行通电试验,通过观察电气设备和电器元件的动作,检查各控制环节的动作程序是否符合要求,并结合故障现象作具体的分析,迅速地缩小故障范围,从而判断出故障所在。这种方法是一种以准为前提,以快为目的的检查方法,特别适用于对复杂线路的故障检查。

(2)用测量法确定故障点

测量法是利用电工工具和仪表(如测电笔、万用表、钳形电流表、兆欧表等)对线路进行断电或带电测量,是查找故障点的有效方法。下面介绍最常用的电阻分阶测量法和电压分阶测量法。

电阻分阶测量法如图1所示线路,若故障现象为按下启动按钮SBl时,接触器KM不吸合,说明控制电路有故障。

电阻分阶测量法是在看清故障现象后,断开电源的情况下,用万用表的欧姆档测量线路的直流电阻参数并最终找到故障点的方法。由于此方法是在断电的情况下操作,相对比较安全,是初学者最常用的检测方法。

测量检查时,在确保熔断器FU2良好后切断控制电路电源,把万用表的转换开关位置于适当倍率的电阻挡,然后按图1所示方法进行测量。

一人按下SBl不放,另一人用万用表依次测量O-1、0-2、0-3、0-4各两点之间的电阻值,根据测量结果可找出故障点,见表1。

这种测量方法如同下(或上)台阶一样依次测量电阻,所以叫电阻分阶测量法。

电压分阶测量法是在控制回路不断电的情况下,采用分阶测量电压的方式检修。若故障现象仍如电阻分阶测量法中一样。测量检查时,首先把万用表的转换开关置于交流电压500V的挡位上,断开主电路,接通控制电路的电源(这点与电阻分阶测量法不同),然后按图2所示方法进行测量。

检测时需要两人配合进行。一人先用万用表测量O和l两点之间的电压,若电压为380V,则说明控制电路的电源电压正常。然后由另一人按下SBl不放,一人把黑表棒接到O点上,红表棒依次接到2、3、4各点上,分别测量出0-2、0-3、0-4两点间的电压。根据其测量结果即可找出故障点,见表2。采用分阶测量电压的方式检修设备时,由于是带电检修,必须要有人监护,且操作时要格外小心,避免发生触电及短路事故。

在实际维修工作中,由于电动机控制线路种类很多,故障也不是千篇一律的,就是同一种故障现象,发生故障的部位也不一定相同。因此,采用以上故障检修方法时,不要生搬硬套,而应按不同的故障情况灵活运用,力求快速、准确地找出故障点,查明原因,及时正确地排除故障。

在进行上述方法进行故障检修时应注意的事项包括以下几点:

(a)在排除故障的过程中,故障分析、排除故障的思路和方法要正确。

(b)用测电笔检测故障时,必须检查测电笔是否符合使用要求。

(c)不能随意更改线路和带电触摸电器元件。

(d)仪表使用要正确,以防止引起错误判断。

(e)带电检修故障时,必须有另一名电工在现场监护,并要确保用电安全。

(f)排除故障应尽可能在较短时间内完成,以免给正常生产带来较大影响。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

电力拖动逆向思维排故法的探索浅析

一、序言

电力拖动是机电专业一门必修课,在整个专业课中占有重要的一席之地。也是电气工作人员必须学习的一门专业知识。

所谓电力拖动简单一点说就是把电力能转换为机械能的一种转换方式和过程。其中包括:识图,绘图,选材,安装,排故等等。其中排故是电力拖动的核心部分,可以说掌握了电力拖动排故就等于掌握了电力拖动的精髓,因为排故需要识图,绘图,选材,安装四项技术的铺垫才可能达到敏捷的思维,准确的判断,快速排除。使故障在最短时间内消失,恢复电气系统正常运行的高手水准。

二、电力拖动故障解读

所谓的故障就是电路{系统}延失规定功能称为故障。包括硬故障,软故障和间歇性故障。

1、硬故障:又称为多发性故障,是由于电机,电器元件或导线,过载,短路,接地或者绝缘击穿,所引起的局部发热。火花,冒烟等症状。

2、软故障:又称为渐发型故障。多数是由于电器问题引起。如电器元件调整不当,机械动作失灵,线头接触不良或脱落引起的症状。

3、间歇性故障:是由于元件老化,容差不足,接触不良的因素造成的,只在某种情况下才表现出来的故障。

三、电力拖动的传统排故思维

1、排除法:根据状况判断是机械故障还是电气故障。例如:电磁阀不工作就要分清楚是阀门问题还是电磁线圈的问题,是让钳工还是让电工解决。

2、逻辑分析法;就是根据电气原理图的工作原理和电器元件的工作现象来判断故障面和故障点。其中有三种方法:

A,电阻法,就是用万用表的电阻档测量线路的各点,确定故障点。

B,电压法,就是用万用表的电压档测量线路的各点,确定故障点。

C,分段测量法,无论是电压法还是电阻法利用这两种方法去进行分段测量,先判断故障段再判断点。

四、逆向思维排故浅析

所谓的逆向思维排故就是不按照常规的思维方法,而是从另外的角度出发反过来想是哪里出现问题才会造成这样的结果。现仅举两例说明。

1、现在用一例家庭最常用的AC220V民用电故障说明问题,引入论证。

这是本人亲自碰到的案例.在一个220V的灯头上,用万用表测量有220V电压,用电笔测量火线有电,灯泡是好的,但是灯泡就是不亮,这岂不是很怪异?若从正面考虑只能说:这怎么可能?很难得出答案。那么从反面去思考呢?有可能是回路阻抗太大,当灯泡接上灯头时电流无法从回路中流过,所以灯泡无法发光。那么是哪里造成的阻抗大呢?是火线还是零线呢?火线?可能性不大,因为已经用电笔测试过火线有电。为了找到问题所在,为了证明是零线问题,我们另外接了一根零线,结果灯泡亮了。于是我们顺着原来的零线方向寻找下去,结果发现是零线断落在一片潮湿的朽叶上,故障找到了。那么为什么用万用表又可以测量出220V的电压呢?原来电压表是高内阻表,通过的电流微乎其微,所以可以测出电压。

而灯泡是个低阻负载,是要通过零线回到变压器中性线进行工作接地的,接地电阻要小于4欧姆。现在零线断落在地面上阻抗很大,不能形成回路电流无法通过,灯泡自然不亮。这就是逆向思维的一个例子。

2、请看:

故障现象;这是一块新安装的电拖板,试机时按下SB2时候,KM1交流接触器嘭,嘭,嘭不断地跳动,无法正常吸合。

这是一个电力拖动教程一个基础教案。是交流接触器触点互锁正反转控制的典型线路,前面的故障按照传统的思维方法用一定的时间可以找出问题所在,我不多加说明。那么按照逆向思维排故法应该怎样去判别呢?电器元件吸合有力,节奏感强,应该不是元件问题。那么一定是控制线路接错了,我们可以这样反过来想,怎样安装才能使试机时候出现这样的现象而且交流接触器触不能正常吸合呢?根据线路原理图分析只要把交流接触器触的常闭触点错误的窜接自身的回路中就能出现这样的现象。这就是逆向思维排故法。

那么上面所分析的故障原因到底是不是如此呢?我们再验证一下,再按一下SB3时候KM2交流接触器也嘭,嘭,嘭不断地跳动,无法正常吸合,这就说明很有可能我们的判断是正确的。再经过检测果然如此,KM1,KM2常闭触点相互接错了。问题解决了。

五、小结:

1、使用逆向思维排故法,能很快的确定故障点,大大的缩短故障排除时间,节约大量人力。

2、使用逆向思维排故法,要对该电气原理图以及工作原理了如指掌,这样才能灵活判断,准确定位。最好有一定的维修经验积累。

3、其实逆向思维排故法就融合在排除法和逻辑分析法中,人们在排故的时候会有意无意的用到它,只是人们平时不多加以总结而已。所有我在这里作一个小结,希望大家能灵活运用,立杆见影,举一反三。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

基于可靠性状态监控的电力拖动监理研究

电力拖动作为占据主导地位的动力系统,检修水平的高低直接控制着生产系统的运行水平,从而决定收益水平。通过对检修体制的分析和审视,以实例对比,分析检修体制监理方法,提出在线监测法,提高了电力拖动系统的可靠性。

拖动即指以各种原动机带动工作机械(负荷)产生并完成运动,电力拖动即以电力为原动力的拖动系统。在各产业中,电力拖动提供了90%以上的原动力,在生产流程中占据基础而重要的核心点位。EPRI(ElectricPowerResearchInstitute,美国电力研究协会)2011年的报告指出:全美电力拖动系统消耗了19%的总能源,57%的电力能源;制造业中电力拖动消耗了70%以上的电能;过程工业中电力拖动消耗的电能占90%以上。每年度成本核算中,附加消耗分布为停产损失93.6%,附加能量消耗3.1%,电力拖动寿命降低1.2%,常规消耗2.1%。状态检测新方法的提出,有益于进一步降低维护及衍射费用,提升生产效率。

1电力拖动系统设备检修体制衍射

1.1事后维修RM/BM

特点是:“任其损坏”Reactive(Break-Down)Maintenance。

优点体现在:不必投资在状态监测上,不会出现过度维修,适用于少数非重点设备。缺点为:无法预测事故停机,产生设备二次损坏及灾难性后果,生产损失,高额维修费用,管理失控。

1.2预防维修PM/TDM

要点在于“定期体检”PreventiveMaintenance。优点体现在维修以可控制的方式在方便的时间进行,减少意外事故,有效避免灾难性事故,可更好的控制备件,节约资金。缺点体现在状态良好的设备也被频繁检修(维修过盛),维修导致的损伤可能大于维修的益处,仍存在计划外故障停机,没有针对不同设备进行优化与寿命分析。

1.3预测维修PdM

预测维修即PredictiveMaintenance,要点在于“没有故障就不修”。优点在于:减少意外停机,仅在需要时购买和使用所需备件,只需在适当时候进行维修。缺点在于:监测仪器、系统、服务、人员花费,不能延长设备寿命。

1.4主动维修PAM

即ProactiveMaintenance,要点在于“查明根源,精确维修,一切基于可靠性”。优点在于:设备寿命延长,设备可靠性增加,更少的故障及二次损坏,停机时间减少,总维护费用降低。缺点在于:监测仪器、系统、服务、人员花费,要求特殊技能,需要更多时间进行分析,全体员工改变观念

2状态监测朝向

2.1当前状况分析

EPRI报告中指出:一个新的资产管理的平台提高生产能力,依靠运行在收支平衡之上,生产中断不可容忍,世界级的生产运营需要可靠性维护。对应的管理策略应为合理利用现有设备,增加生产速度提高质量,增加有效生产时间,降低成本。维修部门从单纯的维修,逐渐转变成为确保企业生产能力的高级职能单元,维修费用占企业生产总成本的4%到14%,维修费用所占比例大于企业利润率。故障停机异常昂贵,远远超过维修费用。

2.2状态监测的目的

保护系统(保障运行,避免事故造成二次损伤)——预知维修(提前预警,减少非计划停机事件)——故障诊断(指导维修进程,实施精密维修)——根源分析(有目的地提高设备可靠性)。

2.3案例分析

美国总统轮船公司2001年8月16日安装检修状态监控系统。2001年8月21日TC1轴承失效(已使用10,000小时)。在海上更换轴承,耽搁时间。二次损伤,造成叶片和迷宫密封损伤(价值$180,000)包括产量损失与人工费用。到达港口后,更换整个轴系,浪费时间。

同样在轮船公司的案例中,预测维修经济效益评估可知,VTR714轴承每套USD20,000to25,000;VTR714轴系每套USD120,000to150,000。已知更换轴承推荐时间为10,000小时(16个月),17条船,实行状态监测4年,轴承更换时间由10,000小时提高到20,000(有些轴承达到30,000小时)。总的价值体现为:17×3台涡轮增压器xUSD20,000=USD1,020,000,其中未计算节省时间与人工的效益及二次损伤费用

3RCM

RCM战略即StrategyforRCM,包括设计与改造、设备与备件采购、备品备件库存保养、安装调试、操作与日常保养、运行调度、维修维护。衍射流程为设备改造—提高运行寿命—状态监测日常维护保养—状态监测—有计划的停机—定期维修—备用策略—事后维修。

RCM手段(InstrumentforRCM)包括红外诊断静态/动态电气诊断、机械振动分析、激光对中/现场动平衡、润滑油品分析、超声诊断、腐蚀检测/探伤和实现静态检测、动态巡检、在线监控

RCM收益(BenefitfromRCM)主要有提高产量(2-40%),减少维修费用(7-60%),提高产品质量(重新回炉生产&废品率减少5-90%),延长设备寿命(>1-10xlifeextension),减少零配件库存(10-60%),增加库存周转率(upto75%),减少成品库存,降低能耗(5-15%),提升生产安全及环境保护。

4故障分布与测试

4.1故障分布

根据EPRI的报告:电力拖动故障的53%源于机械原因,如轴承故障、不平衡、松动等;47%源于电气原因;这其中,10%源于转子,如铸件缺陷导致的不平衡气隙、断条等;37%源于定子绕组。阻抗不平衡导致的电力拖动系统效率的降低。阻抗不平衡导致功率因数的降低。阻抗不平衡导致电力拖动损耗。阻抗不平衡导致温度上升。附加的温升导致电力拖动系统寿命的降低。

4.2电气测试

静态电气测试SET包括:欧姆表/毫欧表、绝缘电阻计(DA/PI)、

高压绝缘测试仪、LCR测试仪、浪涌测试仪、静态电路分析(MCA)。

动态电气测试DET包括:电压表、安培表、功率表、数据采集器、电源质量分析仪、动态效率仪。

其他还有动态电信号分析(ESA)、动态机械测试DMT、红外分析、振动分析、超声诊断。

5电力拖动监测与管理系统的建立

维修策略的优化通过监控点的系统建立得以实现预知维修与监测进程,需要以下为电力拖动状态监测的时间间隔,以月为单位。台湾麦寮电厂拥有7台600MW火力发电力拖动组2台,12MW柴油发电力拖动组(备用)。实现的技术服务有SPMIntroduction(1998)、CMS用于涡轮增压机(1998)、便携式仪器A30-3(1999)、诊断服务(2001)。现在装备4台A30-3,整体监控点数7600点,远程监控2100点,“VCM+BMS”56点,“MG4toAMStoPRO46”软件72点。下一步装备6台Leonova,远程监控1445点,“MG4toAMStoPRO46”136点。通过系统的故障检点监测成形,有效地实现了检修管理技术的提升。

6结束语

电力拖动系统中检修水平的提升,除了依托于设备管理人员的技术水平外,通过在线检测方法,以先进的检测检修管理技术可以实现更加优化的资源配置和生产效率。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接