工业伺服节能改造,关于钢厂连铸有什么节能改造项目信息聚合页,专注于钢厂连铸有什么节能改造项目:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能

注塑机伺服节能改造

  注塑机工作原理  原定量泵(多为叶片泵)+ 异步(鼠笼式)电机的运行中,马达高速恒定持续运转,使油泵100%输出,当动作的速度越慢、动作的 时间越长、压力越大,潜在节能的幅度

5862018-06-28 09:34:30

查看详情

铝型材挤压机节能改造方案

一、项目总述某铝型材公司作为铝型材行业的领军者、企业管理的先驱者,在响应国家节能减排号召、开展能效管理工作方面拥有良好的管理基础和实施条件。本报告结合该公司的管理

2002018-06-25 14:35:10

查看详情

钢铁厂液压站节电改造方案

甲方:某某钢铁集团乙方:苏州徕卡节能电气技术有限公司项目名称:某某钢铁集团 2#线液压站设备的液压伺服同步控制系统和智能化控制节能系统改造项目,达成技术协议条款如下:一、总

1892018-06-25 14:34:32

查看详情

为什么注塑机伺服节能改造要比其他节能方式节电率要高?

为什么注塑机伺服节能改造要比其他节能方式节电率要高?注塑机节能改造的方法有很多,其中主流方式为:将原系统改造为伺服控制系统。为什么伺服控制系统要比其

1852018-08-15 17:00:09

查看详情

油压机节电节能改造方案

第一章 油压机现状介绍 1.1 原机台配置情况 贵司现有油压机47台,进行配置,改造前机台具体配置如下: 品牌 吨位 T 数量 台 电机功率 电机转速 油泵排量 系统流

1432018-06-25 14:13:47

查看详情

液压站伺服节能改造

液压站伺服节能改造 液压站工作原理电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后

1382018-06-28 09:31:14

查看详情

压铸机节能改造方案

第一章 压铸机现状介绍1.1 原机台配置情况现有压铸机20台进行配置,改造前机台具体配置如下: 品牌 型号 数量 油泵型号 电机转速 RMP 电机功

1362018-06-25 13:52:35

查看详情

油压机伺服节能改造

  油压机伺服节能改造  油压机工作原理  电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、

1122018-06-25 16:26:02

查看详情

空压机节能改造

  空压机节能改造  对空压机节能的改造方式主要有以下两种  1.变频调速方式  采取变频调速方式来降低空压机电动机的轴功率输出。改造之前,空压机的压力达到设定压力

1112018-06-25 16:42:26

查看详情

注塑机料筒节能改造

  注塑机料筒节能改造  注塑机料筒节能通过注塑机干燥机高效节能系统进行节能。  该干燥机高效节能系统是将干燥机排出的热风,经高效节能转换系统,吸收热量排出湿气粉尘

1042018-06-29 16:22:33

查看详情

注塑机伺服节能改造的原理大揭秘

  注塑机伺服节能改造的原理大揭秘   注塑机通过徕卡节能设备产品改造之后,正常节电率在:30%-80%  那注塑机节能改造,其改造原理是什么?  注塑机节能改造后的设备,系统

872018-06-26 14:49:16

查看详情

注塑机节能改造方案

某磨具企业,注塑机节能改造方案

782018-06-25 13:43:47

查看详情

工厂节能降耗措施有哪些?

工厂节能降耗措施有哪些?徕卡节能电气,专业从事工业节能15年,在工业节能方面,主要对生产车间内大型液压油压设备做伺服系统节能改造。工厂的节能降耗项目,节能改造

782018-08-03 13:06:08

查看详情

专访苏州徕卡节能电气技术有限公司副总倪春林

  专访苏州徕卡节能电气技术有限公司副总倪春林  前言  有一句话说得非常好,没有传统的行业,只有传统的企业。这两个月,当我们的编辑团队深入近30家企业采访交流时,不论采

742019-02-12 14:07:42

查看详情

工业节能与大数据相结合,为节能事业发展指明方向

  徕卡节能:未来工业节能与大数据结合为发展方向   (徕卡节能大数据技术能源管理系统示意图)  节能减排作为我国当前重点发展产业,发展好坏事关我国当前“调结构,稳

722019-02-18 11:28:11

查看详情

缢生电缆塑料(昆山)有限公司-注塑机伺服改造

  公司名称:缢生电缆塑料(昆山)有限公司  项目名称: 注塑机伺服改造  合作模式:购销合同  项目内容: 镒生电线塑胶(昆山)有限公司是台湾在昆山投资的独资企业,以生产

692018-07-05 11:21:27

查看详情

空压机热回收项目节能改造

空压机热回收项目 内容 节能效果 备注 采暖 热水 产热水量(50℃升至60℃) 388吨/天 10℃温差 满足采暖面积

682018-06-25 14:27:06

查看详情

徕卡节能发展自身技术优势,快速布局节能行业

  徕卡节能:加速节能产业高端化布局  继信息消费、光伏产业、基础设施建设投资之后,发展节能环保产业俨然成为了新一届政府稳增长组合拳中一支有生力量。2013年8月,国务院

652019-02-20 16:03:03

查看详情

注塑机如何实现30%~80%节电率的节能改造

注塑机做节能改造,首选推荐“伺服控制系统”的节能改造。 注塑机,典型的周期性动作、变动负荷的生产设备。其一套完成的生产周期为“锁模、射胶、溶

642018-08-21 14:28:55

查看详情

空压机余热回收节能改造

  空压机余热回收节能改造  空压机余热回收是一项非常环保的节能方式。空压机余热回收是将空压机的高温油经过热交换等技术处理把热量传递到冷水中,冷水被加热后流到保温

612018-06-25 16:44:55

查看详情

工业空压机与锅炉怎样配合进行节能改造?

  随着社会发展,对能源需求剧增,为了进一步推进科学发展,减排降耗节能改造迫在眉睫。  企业内部空压机基本24小时持续运行供气,对企业能源消耗"做出重大贡献",如果空压机能

602019-02-22 09:49:45

查看详情

江苏省发布“十三五”节能减排实施方案 未达标将问责地方政府

  中国江苏网7月3日讯 近日,省政府印发《江苏省“十三五”节能减排综合实施方案》。《方案》为江苏“十三五”持续深化节能减排划定了具体的路线图和

582018-11-06 13:30:58

查看详情

钢铁冶金行业节能改造工程项目

  钢铁冶金行业常用设备有不同类型的液压站,针对液压站进行伺服节能改造,节能降耗效果明显。  大型液压站一般使用行业为:冶金、有色金属加工、矿山、港口、石油化工及风力

542018-06-25 15:14:08

查看详情

注塑机伺服节能改造为什么会节能省电?

一般我们常见的注塑机的提供动力组成由电机和油泵组成,电机驱动油泵输出恒定流量。  注塑机一开机,电机和油泵就会一直处于满负荷运转工作。  经过伺服节能改造之后的注塑

542018-09-26 08:38:54

查看详情

关于公示苏州工业园区2017年度重点用能企业节能降耗低碳目标责任考核结果的通知

  关于公示苏州工业园区2017年度重点用能企业节能降耗低碳目标责任考核结果的通知  根据《苏州工业园区重点用能单位节能降耗低碳发展目标责任考核方案》(苏园经〔2016

542018-07-24 10:06:03

查看详情

循环冷却水节能改造

循环冷却水节能改造   产品概述  循环水智能控制系统内含四大功能模块:  1. 带气候补偿的人工智能控制系统  2. “风”“水”平衡系统  3. 水

522018-06-25 16:38:25

查看详情

注塑机做变频器改造,能省电么?与伺服系统相比有多大空间?

注塑机伺服节能改造相比变频器节能有哪些优势:1)控制精度 :交流伺服电机的控制精度由伺服同步电机轴后端的旋转编码器保证。2)低频特性:交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。

522018-07-27 15:43:05

查看详情

中央空调节能改造

    中央空调工作原理  一般来说,中央空调系统的大负载能力是按照天气热、负荷大的条件来设计,但实际上系统极少在这些极限条件下工作。根据有关资料统计,空调设备95%的

492018-06-25 16:35:37

查看详情

液压系统运行状况分析,如何进行节能改造

    液压系统主要应用场景:  在钢厂、铝型材厂家、注塑厂家、汽车配件(四门一盖、汽车外壳等部件)五金冶金类行业广泛应用液压系统。  主要体现设备有:注塑机、压铸机

492018-12-21 10:19:21

查看详情

什么是液压系统的伺服节能改造?

  什么是液压系统的伺服节能改造?  液压系统  液压系统指的是通过改变液压油的压强大小来传递动力,推动终端设备动作的系统。  一套完整的液压系统大致由五个部分组

492019-01-15 16:46:29

查看详情
节能改造关注问答
1、

三相异步振动电机的工作原理

三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,喷雾机得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。


--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

电机能效提升的意义 节能推广分析及建议

中国中小型电机行业政策从国家层面主要就是推广节能高效电机。节能高效电机与普通电机相比,损耗平均下降20%、效率提高2%-7%;超高效电机则比节能高效电机效率平均再提高2%。电机系统节能对推行节能降耗战略的国策影响巨大。

为适应国民经济的发展要求,我国大力推广高效节能电机。高效节能电机是指通用标准型电动机具有高效率的电机。高效节能电机采用新型电机设计、新工艺及新材料,通过降低电磁能、热能和机械能的损耗,提高输出效率。

电机能效提升意义

业内人士指出,长期以来,我国电机寿命平均比国外低3%到5%,运行系统效率比国外低10%到20%。而在2013年中国电机保有量大约17亿千瓦,总耗电量为3万亿千瓦时,占全社会用电总量的64%、工业用电的75%。“如果电机系统的效率提高5%到8%,每年节约的电相当于两到三个三峡大坝的发电量。”中国节能协会常务副理事长王秦平称,超高效电动机的研发和生产,是提高电机系统效能的重要基础,铜转子电动机这种代表世界最高水平的电动机组建,将有利促进中国电动机能效的提升。

但国内高效电机标准未强制实施之时,企业认可度不高。美国2011年就已经强制执行IE3(效率等级),中国目前在强制推IE2标准。据魏华钧介绍,原来计划2015年推IE3标准,但国内电机行业没作好准备,个别企业没做到,多数企业做不到,所以推迟到2016年,比美国落后5年。

高效电机节能分析

为准确测试高效电机与普通电机的节能效果,有机构做过试验。选择了某电机生产企业YE3-160M1-2型号电动机与该企业早期生产的同规格Y160M1-2型号电动机分别在50%及75%负载率下进行了对比试验。

——试验数据说明

电机处于50%负载率运行时,Y160M1-2输出功率为5522.3W,YE3-160M1-2输出功率为5524.1W,可以等同认为在同一负载率下运行,其输入功率分别为6715.0W、6392.0W,转速分别为2965.4rpm、2976.7rpm。

电机处于75%负载率运行时,Y160M1-2输出功率为8284.6W,YE3-160M1-2输出功率为8265.0W,可以等同认为在同一负载率下运行,其输入功率分别为9679.0W、9270.0W,转速分别为2949.3rpm、2964.1rpm。

——节能效果分析

电动机处于50%负载率运行时,Y160M1-2电机效率为82.24%,YE3-160M1-2电机效率为86.42%,效率提高4.18个百分点;电动机处于75%负载率运行时,Y160M1-2电机效率为85.59%,YE3-160M1-2电机效率为89.16%,效率提高3.57个百分点。从现场测试效果来看,节能效果明显。

高效电机推广难题

1.对高效节能电机替代普通电机的认识不到位

电机作为拖动设备的动力装置,在大多数运行环境下,对其运行参数的要求不高,也不属于易损设备,很多上世纪六十年代生产的J系列电动机仍然在很多企业中正常运转。在市场经济下,有些企业目光短视,缩减成本进行采购,这与高效电机价格较高成了一对矛盾。只要能电机保证生产正常运行,大部分企业一般不会拿出额外的投资来更换电机,当然也更不会拿出超出普通电机很多的投资来更换高效电机,这是高效电机推广困难的主要因素。另外,信息不对称、观念错位、市场不规范、节能意识不强等也成为高效电机在我国推广的障碍。

2.对高效节能电机节能效果认知度不够

部分用能企业更换高效节能电机后反映,其用电量与原低效电机节能相比,节能效果并不明显,对高效电机节能率3-5%存在质疑。笔者以为,同等输出功率的更高一级能效电机的转差会减少20%-30%,转速比普通电机高10转以上,其拖动设备运行状态发生了一定改变,而对于大多数的用电设备,其电力消耗与转速的三次方成比例关系,例如,增加2%的运行速度将会造成增加8%的电力消耗,这就很容易抵消更换高效电机所预期的节能量。节能效果只考虑耗能,不考虑出力增加,是统计节能量偏小的重要因素。

3.高效电机价格偏高

高效电机从设计、材料和工艺上都采用了先进的技术措施,例如采用新型材料、合理的定转子槽数、风扇参数和正弦绕组等,来降低损耗,因此高效电机生产成本比普通电机高10-20%左右,有的甚至高50%,导致许多用户产生“节能不节钱”的观念。

4.电机销售模式决定高效电机推广困难重重

据有关资料显示,电机销售面向的三类客户其产品用量所占比分别为:终端用户占5%,代理商约占15%,下游产业的机械设备配套商占80%。由于由此可见,高效电机能否最终被市场接受,机械设备配套商的态度最为关键。由于大多数机械设备配套商并不是最终使用者,他们更多的是考虑如何节省一次性投入,提高自己终端产品在竞标中的价格优势,关注价格多于关注效率,缺乏主动采购高效电机的动力,而终端用户又没有决定采用高效电机的权力,这是高效电机推广的重要瓶颈。

5.电机系统节能技术改造合同能源管理项目推行困难

合同能源管理作为近几年兴起的一种市场化节能机制,对于促进企业提升能源利用效率发挥了积极作用。由于电机系统节能改造项目投资较大、节能量统计计量困难、回收期长等因素,有些节能服务公司仅仅以高效电机与普通电机的节电率来核算其回收期,不愿意开展电机系统技术改造的项目。

高效电机推广建议

据了解,未来工信部将充分利用财政补贴政策拉动高效电机市场。一方面,落实好节能产品惠民工程高效电机推广财政补贴政策;另一方面,逐步把选用高效电机作为高效风机、泵、压缩机等通用设备入围节能产品惠民工程的必要条件,延伸财政补助推广高效电机的产业链"。

高效节能电机采用新型电机设计、新工艺及新材料,通过降低电磁能、热能和机械能的损耗,提高输出效率,已经有比较成熟的技术,也就是说企业基本都能生产。然而,电机能效提升计划并未能如期完成。其中原因是长远利益和眼前利益的矛盾、短期投入和产出的矛盾、改革创新和因循守旧的对立,以及企业改革导致短期经济利益失衡的现实。但是中国改革开放的收获和经验告诉我们,革新一定是正确的。

产业前沿建议,综合工业先进国家和中国自己的实践经验,应该从这几个方面加大力度执行电机能效提升进程:第一,强制法规约束、奖惩分明、责任到位;第二,对经济(工业)发达地区提出更高的要求和执行目标;第三,加大财政补贴力度、重点企业重点补贴、超额企业额外补贴;第四、分类批量改造或建设全高效节能电机应用(试点)企业、变试点企业为标杆企业;第五,研究降低高效电机的生产成本;第六,尽量要求高标准甚至超标准,比如选择稀土永磁钕铁硼电机等。

2015年7月,工信部官员再度提出电机能效提升工作的重要性和紧迫性,要将这项工作作为当前乃至“十三五”工业节能减排领域的重要任务,并纳入工业绿色发展专项行动,下一步的重点方向是按照行业和领域用市场化的机制推进电机系统节能。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

电机扭矩试验台的结构组成

电机微扭矩检测试验台主要分硬件部分和软件部分,硬件部分由气缸、伺服电机、伺服卡、采集卡、工控机等来协调待测EPS电机的运转。软件部分主要是驱动伺服、气缸协同工作,控制设备的运行来完成检测,并从采集卡实时采集角度、扭矩传感器输出电压等数据参数,根据各项试验的数据绘制图表报告,计算产品损耗扭矩、波动扭矩,并标定产品是否合格。

测试台硬件本试验的硬件部分主要是来控制扭力传感器和电机、气缸的协调动作,实时进行数据采集,主要包含如下部分:

(1)气缸:测试过程开始前将伺服与待测EPS电机键槽推送到位。

(2)伺服电机:用来控制待测EPS电机的转动,并反馈角度。

(3)采集卡:用来采集各项实时参数,包括角度、扭矩。选用NIPCI6280采集卡。

(4)伺服卡:用来驱动伺服电机,精准控制电机运行动作。

选用研华PCI1240U(四轴)伺服卡。

硬件部分的工作原理主要是根据所确定的动作来完成。采用多功能采集卡进行模拟、数字信号的输入输出采集,伺服卡控制电机的各种运动状态(不同转速、方向)。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


4、

龙门刨床的电气改造及节电经济效益分析

本文介绍了早期的由发电机组拖动的龙门刨床或单臂刨床现存的问题,并简述了针对该种类型的刨床改造方式:采用全数字直流调速装置组合先进的PLC控制方式,着重强调了改造后的节能降耗所带来的经济效益以及改造后的其它特点。

一、序言

随着社会的进步,科技的发展,产于上个世纪七、八十年代的龙门刨床的电器控制线路已经十分落后,而且老化严重,故障频繁,维修非常困难,费时费力,效率低,能耗大,同时噪音也很大,污染严重。经过多年的时间经验,我们对老式龙门刨床的电气控制线路进行了彻底的技术改造,将发电机组、交磁扩大机控制的龙门刨床改造成为全数字智能化的电气控制系统。

上个世纪七、八十年代的龙门刨床工作台一般是由一台60KW直流电机拖动。该直流电机参数为:60KW,220V,305A,1000RPM,励磁为220V,4.11A。该直流电机电源采用电动机-直流发电机组和交磁扩大机提供(简称K-F-D系统),采用调直流发电机的励磁电流方式来改变直流电动机的电枢电压,从而达到调速的目的。原来整个电气控制系统比较复杂,使用电器元件也比较多,加之使用时间长,故障频繁。我公司综合以往改造经验,B2010A、B2012A、B2012Q、B2151、B2152、B2016A、BJ2020、B20125Q等10余种型号的龙门刨床及单臂刨床都很适合全数字智能化控制的电气系统改造。

二、早期龙门刨床的特点:

1、刨床的工作台驱动是由交流电动机、直流发电机、直流电动机及交磁扩大机组成。K-F-D控制系统的主要缺点是:起动电流大,对电网容量要求高,机械传动能耗大,传输效率低。

各电机基本参数见下表:

<center></center>2、改造前的龙门刨床电控系统存在的问题及缺点:

⑴设备使用时间长达数十年,电器元件严重老化,故障率频繁,维修费用高,已不能满足目前生产加工的需要;

⑵由于采用的是交直流电动机组,其效率只有0.5~0.68,并且能耗高;

⑶主传动及控制部分中间环节较多,不但增加了维护工作量,也使整个系统可靠性大大降低。

⑷工作台换向及减速靠机械式限位开关实现,减速及换向时撞击声音大,且整个电控系统附带有各种电阻、继电器多,故障点多,低速时速度不稳,换向不稳定,常会出现爬行、越位等故障;

⑹工作台调速范围小,精度(D≤30),加工工件的表面质量差;

⑺占地面积大,噪音高。

三、龙门刨床改造方式及改造后的特点:

1.龙门刨工作台直流电机调速系统的改造:

改造后的龙门刨床工作台直流电机采用英国欧陆公司生产的590+/380A直流调速装置驱动,完全取代直流发电机组和交磁扩大机,实现了工作台的无级调速、自动减速、换向以及撞到极限限位后停车等动作。欧陆590+是具有较高水平的全微机化工业直流电机调速驱动器,输出电流范围在15A~2400A,该产品还具有控制、监控、保护和串行通讯的功能。

590+直流调速装置还有一系列可供用户随意设定的参数,这些参数有些来自外部,如速度给定、转矩给定、速度反馈以及电机的各种特性参数等,同时配备I/O接口,以及P3串行通讯接口,可以方便的与上位机联接通讯,以满足各种参数设置以及与其他装置通讯的需要。

2.用PLC实现龙门刨床的其他电器动作的自动控制:完成龙门刨床自动进刀、抬刀、落刀、横梁升降、横梁夹紧放松、各刀架快速移动以及工作台的加速、减速、换向等各种动作的正常运转。

3.工作台行程限位开关更换为电磁感应的接近开关:性能更稳定,响应时间快,而且使用寿命更比原来的行程开关更长久。

4.在直流电机尾端加装测速发电机后:实现闭环控制,提高控制及定位精度。

5、使用效率:

由欧陆590+和PLC相互配合进行改造后的龙门刨床控制系统最低速度可达5rpm,最高为1500rpm,从起步到全速只需8秒时间,甚至更短时间。从全速到减速换向,可在12秒时间内完成,且换向平稳无冲击,不会发生振荡、爬行、越位等现象,同时可以恒转矩切削,因而大大提高加工精度及效率。通过悬挂按钮箱能完成系统的启动、停止、自动等功能。加工长度范围由悬挂按钮站和工作台上的可以滑动的挡铁完成行程设置,并可以通过PLC的记忆功能来保存,电气柜上有各种报警指示,几乎可以实现无故障、免维护运行。

四、效益分析

使用欧陆590+直流调速装置和PLC结合控制后,节能效果十分明显,改造周期短。因此,将先进的直流调速装置应用到龙门刨床的工作台调速中,无疑是一种很大的技术革新,可以带来较大的经济效益。

以下是我公司对襄樊某厂B220型龙门刨床改造前后的测试实例:

其主传动部分(工作台)采用直流发电机组拖动直流电动机,功率60KW,是主要能耗。其余功耗如横梁升降和刀架的进给等较小可忽略不计。经改造后,电费成本、工艺性能、工作环境及电网干扰等均得到显著改善。

1、测试参数:

有功功率、三相电流、三相电压、功率因素、噪音强度、工作台的进给速度等

2、改造前后测试相关参数:

3、结论分析:

⑴技术数据

⑵老式控制系统与新式控制系统的效果对比见下表:

⑶所产生效益

①直接经济效益

原发电机组在多年生产、制造及用户使用中测定,其起动电流大,对电网容量要求高,且空载电流达80-100安,在工作间隔时间(调整、装卸工件时间),这些电能被白白浪费。改用新型数字调速系统后,这个空载电流完全可以节省下来,且工作间隔时间越长节电效果越明显。按计算,节约功率为△P:

U2=380V;△I取其空载电流中间值

90A;COSΦ取0.40

则△P=1.732×380×90×0.4=24kW

每小时节电24度,按每天工作间隔时间三小时、全年按310天计算:

年节电:W=24×3×310=22320kWh

拆除交磁发电机后,每小时可节约电能约3kW,按每天两班制计算:

年节电:W=3×16×310=14880kWh

另外,采用新型数字调速系统,可以省去了由多台电机之间电能传递而造成的效率损失,其数值为所需加工零件电能的6-10%,按一般性加工时,每天省去的传动效率损耗为80度,全年节电即为24800度。

以上三项合计,全年节电可达6万多度,若每度按0.6元计算,全年节电约为4万余元。

②提高了机床的电气自动化程度,大大降低了机床的故障率和维修费用,年节约成本约1万余元.

③占地面积小,无噪声。除此外,拆除后的发电机组还可以再利用,创造更多的经济价值。

4.改造后的龙门刨控制系统的特点:

⑴该数字直流传动装置能耗低,效率高。工作间隔无损耗,大大节约电能,其效率可达到0.95以上,而直流发电机组只有0.7左右;

⑵起动电流小(起动电流I≤1.5Ie),对电网的冲击小;

⑶调速性能高。590+是一种高精度传动装置,以其自身的优点使整个主传动控制系统的精度、调速范围、快速性能有了很大的改善,提高了加工能力及其加工质量;

⑷结构简单,可靠性高。与交磁扩大机组相比,全数字可逆直流调速装置可减少70KW直流发电机一台,55KW交流电动机一台,交磁放大机一套,同时大大减少了占地面积,使控制系统结构简单、体积缩小;

⑸其它动作均由PLC实现,电器元件少,简单直观。用可编程控制器取代繁杂的交直流继电器控制,大大提高了系统的可靠性,同时维护也十分方便,减少运行成本;

⑹装机水平高,具有完善的保护功能。系统具有良好的保护和监控功能,PLC有自身的输入/输出监控指示灯,而全数字直流调速装置则更有良好的保护监控功能,具有故障存储记忆,自适应参数优化等多种功能;

⑻改造后,由于取掉了交流机组,因而可无噪音运行。

五、结论

早期由发电机组拖动的龙门刨床和单臂刨床都很适合上述电气改造方式。改造后,不仅能耗大大降低,使用效率也得到很大提高。用户仅需要投资几万元,经过一两年的时间就可以收回成本。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

电机拖动中变频调速系统的常见故障及排除措施

电机是一种实现电能量转换的电磁装置,包括电动机和发电机。电机拖动是指由原动机带动生产机械运动,以电动机作为原动机并且按照人们通常给定的规律带动生产机械的运转,就称为电机拖动。电机拖动系统是用电动机来拖动机械运行的系统。

随着计算机和电子技术的发展,PLC、变频器等自动化产品在电机拖动领域得到了广泛应用。电机拖动中采用PLC-变频器调速在近几年得到了推广和普及。随着变频器使用的普及,在日常工作中会经常遇到变频器报警跳闸等故障情况,为了更好地使用变频器,减少设备停机时间,本文总结了一些变频器常见故障及排除措施。

1.变频调速系统的优点

调速范围宽,可实现有精确控制;软启动、软停止的功能降低了机械传动冲击;组件高度集成以及采用可靠性高的低压电器,有效解降低设备故障率,而且容易维护。提高了系统的功率因数和工作效率而且有明显的节能效果。

2.变频器对工作环境的要求

变频器的工作电源电压应相对稳定,环境温度为-10℃~45℃,湿度应在95%RH以下、无腐蚀性气体和导电尘埃等清洁干净的场所。当变频器在电源电压波动幅度大和潮湿高温多尘的恶劣环境下工作时,容易出现过压、欠压、过流、短路等故障。

3.常见故障及排除措施

3.1过电流、过载

一般是由于变频器的输出电流超过过电流检测值(约为额定电流的200%)、变频器的输出电流超过电机或变频器的额定负载能力(约为额定值的160%)。应检查输入三相电源是否出现缺相或不平衡、电机接线端子(U、V、W)电路之间有无相间短路或对地短路;检查电机和编码器电缆及相序是否正确;检查电机功率是否匹配、在电机电缆上是否含有功率因数校正电容或浪涌吸收装置、变频器输出侧安装的电磁开关是否误动作;检查变频器的加速时间以及变频器的参数设定是否正确。

3.2过电压

一般是由于变频器的中间电路直流电压高于过电压的极限值。应检查电源电压是否在规定范围内、变频器的减速时间是否设置过短,如过短,延长减速时间;是否正确使用制动单元、降低负载惯量或放大变频器容量。

3.3欠电压

一般是由于变频器的中间电路直流电压低于欠电压的极限值。检查电源电压是否在规定范围内、电源是否存在停电、瞬间停电、主电路器件故障、接触不良等情况、供电变压器容量是否合适、系统中是否存在大启动电流的负载。

3.4接地故障

一般是由于变频器输出侧的接地电流,超出变频器的整定值。检查电机和电机电缆的对地绝缘是否正常。

3.5输入电源缺相

一般是由于变频器直流环节电压波动太大输入电源缺相。检查变频器的供电电压是否缺相、输入三相电源电压不平衡度是否超过4%、负载波动是否过大、变频器的三相输入电流是否平衡。

3.6输出缺相

一般是由于变频器检测输出某相无输出电流,而另两相有电流。检查电机、变频器和电机之间的接线;检查变频器三相输出电压是否平衡。

3.7过热故障

一般是由于变频器的散热器温度,超出变频器的整定值。检查环境温度是否超过标准;检查变频器的散热风机工作是否正常,散热风道有无堵塞;检查变频器散热器的温度显示值。

3.8整流模块损坏

一般是由于电网电压或内部短路引起的,在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有影响的设备等。

3.9逆变模块损坏

一般是由于电缆或电机损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。在确定无任何故障下,运行变频器。

3.10上电无显示

一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,也有可能是面板损坏。

4.日常维护检查应注意事项

变频器上电之前应先检测周围环境的温度及湿度,温度过高会导致变频器过热报警,严重时会直接导致电路短路、变频器功率器件损坏;空气湿度过大会导致变频器内部直接短路。在变频器运行时要注意其冷却系统工作是否正常:风道排风是否流畅,风机是否有异常噪音。IP20以上的变频器可直接敞开安装,IP20以下的变频器一般应采用柜式安装,变频柜散热效果好坏将直接影响变频器的正常运行。保护柜尽可能安装在周围温度不易上升的地方;保护柜应通风、防尘、防雨性能良好;频器在柜内应该纵向安装,而且上下、左右方向应留有足够的空间,方便变频器通风散热;柜内应安装温湿度传感器、散热风扇、加热除湿装置;经常检查进风口是否有灰尘及阻塞物,变频器的排风系统如风扇旋转是否流畅都是我们日常检查不可忽略的地方。电动机变压器、电抗器等是否过热以及有异味;变频器和马达是否有异常响声;变频器面板电流显示是否偏大或电流变化幅度太大,输出UVW三相电压与电流是否平衡等。

变频器由多种部件组成,有些部件在长期工作后其性能会逐渐降低、老化,这也是变频器发生故障的主要原因,为了保证设备长期的正常运转,冷却风扇以及滤波电容应定期进行更换。

4.1冷却风扇的更换

变频器的功率模块是发热最严重的器件,其连续工作所产生的热量必须要及时排出,一般风扇的寿命大约为10kh~40kh。按变频器连续运行折算为2~3年就要更换一次风扇,直接冷却风扇有二线和三线之分,二线风扇其中一线为正极,另一线为负线,更换时应注意不要接错;三线风扇除了正、负极外还有一根检测线,安装错误的话会引起变频器过热报警。

4.2滤波电容的更换

中间直流回路滤波电容:又称电解电容,其主要作用就是平滑直流电压,吸收直流中的低频谐波,它的连续工作产生的热量加上变频器本身产生的热量都会加快其电解液的干涸,直接影响其容量的大小。正常情况下电容的使用寿命为5年。建议每年定期检查电容容量一次,一般其容量减少20%以上应更换。

5.定期保养应注意事项

应至少一年进行一次定期检查。检查螺丝钉、螺栓和即插件等是否松动。定期清扫空气过滤器冷却风道及内部灰尘。相间电阻以及输入输出电抗器的对地是否有短路现象,必要时应用绝缘电阻测试仪进行测量,正常应大于几十兆欧。在条件允许的情况下,要用示波器测量开关电源输出各电路电压的平稳性,如:5V、12V、15V、24V等电压。U、V、W相间波形是否为正弦波。导体和绝缘体是否有腐蚀现象,如果有的话要及时用酒精擦拭干净。测量驱动器电路各路波形的方法是否有畸变。接触器的触点是否有打火痕迹,严重的要更换同型号或大于原容量的新品。确认保护显示回路无异常;确认控制电压的正确性,进行顺序保护动作试验;确认变频器在单独运行时输出电压的平衡度。

6.结束语

在电机拖动中选择适合的变频器,合理运用变频调速技术总结并且对容易出现问题的地方定期进行维修和保养工作,及时更换易损件可以保证变频器正常运行减少故障。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

试论交流变频拖动系统

交流调速技术的基本控制原理很早就已经确立,转子电阻控制、串级调速等方式早已经实用化,但是长期以来,异步电机交流调速技术在稳定性、可靠性、控制性能和维修等方面的不足,使其使用范围受到限制;尤其是在像电梯等对控制性能、可靠性等要求非常高的系统中,一直都是直流电动机调速技术的天下。1965年以后,由于晶闸管及控制晶体管的进步,控制线绕式异步电动机的转子电压进行调速运转的静止串级调速、采用晶闸管逆变器控制鼠笼式异步电动机进行调速运转等方式逐渐实用化,逐渐奠定了以逆变器为主流的技术基础。而且直接采用电动机调速的技术逐渐取代了其它各种调速技术(如采用皮带的机械式传动、采用液压联轴节的液力传动等),成为调速技术的主流。

1.变频调速技术的基本原理

异步电机,特别是三相鼠笼式电机,由于结构简单牢固、价格便宜、运行可靠和无需维护等特点,在交流传动中得到了及为广泛的应用;异步电机的调速可分为两大类,一类是在电机旋转磁场同步转速,恒定的情况下调节电机的电机转差率;另一类是调节电机的同步转速。异步电动机的调压调速、转子串电阻调速、滑差离合器调速、斩波调速等,都是在电机旋转磁场同步转速恒定的情况下调节电机的转差率来实现电机调速,这类调速方法简单,易于实现,但效率较低。变极调速和变频调速则是在保持邃本不变的情况下,调节电机的同步转速,来实现电机调速,这类调速方法属于高效率的调速方法,特别是变频调速是异步电动机高效调速方法的典型,它既能实现异步电动机的无级调速,又能根据负载的特性不同,通过适当调节电压与频率之间的关系,可使电机始终运行在高效率区,并保证良好的运行特性。另外异步电动机采用变频调速技术还能显着改善起动性能,大幅度降低电机的起动电流,增加起动转矩,同时还能加宽调速范围、提高力力矩性能指标等。可以说,变频调速是目前为止异步电动机最为理想的调速方法。

2.变频器的结构

综合考虑液压电梯控制系统的特点,主要考虑的是低频力矩指标和四象限工作能力;在变频调速液压电梯速度控制中,采用电压源型交-直-交变频器。变频器主要由五部分组成:整流回路、逆变器、控制电路、制动组件和保护回路。

2.1整流回路

整流器由二极管或晶闸管组成,它负责将工频电源变成直流。在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器部分产生的脉动电流也使直流电压变动;为了抑制电压波动,可采用直流电抗和电容吸收脉动电压(电流)。

2.2逆变器

现在的交-直-交变频器在采用脉宽调制(PWM)技术后,把调压和调频的任务统一由变频器来完成,最常用的调节方案采用SPWM方式,采用参考正弦电压波与载频三角波来互相比较,决定主开关的导通时间来实现调压,利用脉冲宽度的改变来得到幅值不同的正弦基波电压。脉宽调制型变频器不仅可以把调压和调频的功能集于一身,而且还因采用不可控整流,简化了整流装置,降低了整流器的造价,同时还改善了系统的功率因数,加快了系统的动态响应,特别是通过采用适当的调制方法可以使变频器输出电压中谐波分量,尤其是低次谐波显着减少,从而使异步电动机的技术性能指标得到了大幅度地改善。

2.3制动组件

一般的电压源型交-直-交变频器为不可逆变频器,即变频器正常运行为两象限运转,电源只向异步电动机输出功率。对于减速时需要制动力的负载,功率会从异步电动机向逆变器回流,此时变频器需附加一套制动组件,以实现电机Ⅱ、Ⅳ象限制动;制动组件采用制动电阻的形式,当异步电动机工作于制动发电状态时(转差率为负),将产生再生能量,再生能量存于变频器平滑回路电容器中,使平滑回路中直流电压升高,当电压升高到一定值时,控制电路使制动部分的晶体管道通,再生能源流入电阻器被消耗掉。再生能量较大时,控制单元和电阻单元将分别设置。对于需要急加减速度,并且加减速度频繁的场合(电梯),或对于制动为主要目的场合(液压电梯下行),需采用可逆变频器,实现电动机的四象限运行,即双向电动和能量回馈制动运行。可逆型逆变器可以将电机的再生能源反馈回电网。

2.4控制回路

向异步电机供电的主回路提供控制信号的回路,称为控制回路。控制回路由由运算回路、电流电源检测回路、驱动回路、测速回路等组成。其中运算回路将外部的速度、转矩指令同检测回路的电流、电压信号进行比较运算,决定变频器的输出电源和频率。电压/电流检测回路采用霍耳CT、电阻等元件,并与主回路隔离进行电压、电流的检测。驱动回路驱动主回路元件的导通、关断,它与控制回路隔离。速度检测回路通过异步电机轴上的速度检测器(TG、PLG)或其他途径,将速度信号送回运算回路,对系统构成速度闭环控制。

2.5保护回路

变频器控制回路中的保护可分为变频器保护和异步电动机保护。变频器的保护功能有:瞬时过电流保护、过载保护、再生过电压保护、瞬时停电保护、接地过电流保护、冷风机异常保护等。对异步电动机的保护有:过载保护和超速(超频)保护。

3.变频调速的控制方式

3.1V/F控制

异步电动机的转速由电源频率和级数决定,所以改变频率可以控制电动机调速运行。但是频率的改变导致电动机内部阻抗也改变,因此单独改变频率将产生由弱励磁引起的转矩不足和由过励磁引起的磁饱和等现象,使电动机的功率因数和效率下降:V/F是一种开环控制方式,变频器在改变输出频率的同时,必须控制变频器的输出电压,即使V/F为常值。V/F控制系统结构简单,但是静、动态性能均不理想,尤其在低频时的特性较差,需要函数发生器适当提高定子电压来补偿磁通的减少;这种控制方式基本上不适合在液压电梯中应用。

3.2转差频率控制

转差频率控制方式是在V/F控制方式的基础上发展起来的,需要检测出电动机的转速,然后以电动机速度与转差频率的和来给定变频器输出频率。由于能够任意控制与转矩、电流有直接关系的转差频率,与V/F控制相比,其加减速特性和限制过电流的能力得到提高。另外,它具有速度控制器,利用速度反馈进行速度闭环控制可适用于自动控制系统。在V/F控制中,如果保持电动机气隙磁通一定,则电动机的转矩及电流由转差频率决定。如果增加控制电动机转差频率的功能,那么异步电动机产生的转矩就可以控制。转差频率是施加于电动机的交流电压频率与电动机速度(电气角频率)的差频率,在电动机上安装测速发电机(PG)等速度检测元件,就可以知道电动机的速度,此速度加上转差频率(与产生所要求的转矩相对应)就是变频器的输出频率。根据电动机产生的转矩大体与转差频率成比例的事实来控制电动机产生的转矩,就是转差频率控制的原理,这种控制方式具有较高的静动态性能。

3.3矢量控制

矢量控制的特点:

(1)矢量控制特性比其他控制特性优越,可实现与直流电机相同的控制特性;

(2)矢量控制变频调速响应速度快,调速范围广,特别是低速段的调速性能优越,可满足频繁急加、减速度运转和连续四象限运转等场合;

(3)可以进行转矩控制。在电机静止状态时,能控制产生静止转矩;

(4)控制运算中一般需要使用电动机的参数,需要电动机的速度反馈,一般要求电动机为专用电动机。由于矢量控制方式完美的控制特性,可以很好地满足液压电梯的低频力矩指标、静动态性能。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

浅析电力拖动系统稳定运行的充要条件

电力的拖动系统可实现机械生产各方面的不同需求,且价格不昂贵、电路设计简单、对自身系统有保护作用,所以当前工业生产对电力拖动应用已非常广泛。本篇文章简单分析了电力拖动系统稳定运行的充要条件,并且对他励直流电动机、异步电动机三种典型负载时系统的稳定性进行判断。

伴随自动化水平提升及科技的发展,在工业生产中对电力拖动系统的控制性、安全性得到了极大重视,再加上电力拖动系统的众多优点,因此电力拖动系统已得到了很广泛的运用。

1电力拖动系统

1.1稳定运行概念

(1)转速改变:假设原本是在工业生产中的运动,以相同的速度进行。当通过一些条件,如负载转矩变化,电源电压变化时,系统切换原来的转速(速度可能是变大或是变小),将原有平稳状态所打破。而在这一种情况下电力拖动系统会生产新的转速并且可以持续一段时间,然后通过新的转速带来新的稳定状态,并产生新的工业生产运行。这表明该系统的运行状态是非常稳定的。

(2)转速变回:可能是因为电源电压及负载转矩变化所带来的副作用消失,新的转速转变回原有的转速,电力拖动系统后又进行正常运行。这点也可说明电力推动系统是很稳定的。

(3)转速超限上升、下降:电源电压及负载转矩变化所带来的副作用消失之后,电力拖动系统的转速却超越正常限量的上升或是下降,则可证明该系统的运行存在不稳定的情况。

1.2工作原理

(1)方向的判断正方向判断:电动机在未有干扰和障碍的环境下,假设可以正常地旋转,即可认为方向为正方向。电磁转矩、转速所形成方向和电动机旋转一致为正向;反方向判断:电磁转矩、转速所形成方向和电动机旋转不一致为反向。

(2)控制情况:一般情况下是用电气设备控制。计算机对电力拖动系统控制运用的方法主要是靠逻辑运算、编写程序进行。

1.3负载机械性、过渡

(1)负载机械性分为:恒转矩、恒功率、风机泵类负载三种。在电动机上运用负载非常广泛的,为了可完善电力拖动系统,对负载了解就非常必要。第一,要知道恒转矩、恒功载、风机泵类负载以及负载方程式;第二,要了解负载曲线图,与所学过的动力学有机结合,对负载分析,分析其特性。

(2)过渡:过渡受外来因素影响(包括外部环境、人为等原因)负载转矩参数会发生变化,电力拖动系统稳定性会被打破。为了确保电力拖动系统稳定,要明确根据电动机机械性产生变化来确定过渡的运行情况。

1.4电动机

(1)电动机种类:a.安装方式:包括卧式、立式两种类型;b.防护方式:包括开放式、防护式、封闭式、防爆式四种类型。

(2)电动机工作:可用连续工作制进行表达,多数情况电动机工作形式与生产机械一致,从三方面选择(连续工作制、周期继续工作制、短期工作制)。

(3)电动机的选择:电动机好坏决定电力拖动系统的成功与否,因此对与电动机的选择要细心,既要考虑电动机自身性能和所工作的环境,还要考虑到价格等客观因素。电动机构造、机械能力、形式要完完全全根据生产要求进行,做到机械类别、负载条件、形式完全是吻合的,也只有满足了这些条件才可保证电动机质量合格及正常运行,才能让电力拖动系统发挥出最佳的效果及作用。在生产运行中会发现电动机容量同样也是重要的环节,在选择电动机时要非常重视。电动机工作时所要求的环境同样重要,环境温度要是渐渐升高并接近或达到规定温度值,就会造成电动机在运行时的机械散热作用及拖动负载作用不能发挥最大效果。

在选择电动机容量的时候需要正确判断额定功率值,但在现实环境的影响下,额定功率地计算并不容易,它要求我们要了解并掌握好电动机相关依据、理论,并且通过合理分析及试验。电动机额定转速是按照经济、技术、使用数据决定,例如:在一个电动机运行过程中制动、启动次数变少就可用技术、经济两方面对电动机进行选择,而一个电动机运行过程中启动、制动次数多时即可用储蓄量来对电动机进行选择。

1.5安全保护

电力拖动系统所无法忽视的问题:安全保护,可分为电器保护、计算机保护两个方面。电器保护是最为简单的也是最为基础的,又可成为短路保护、过流保护、热保护、欠电压保护等等。

(1)短路保护:为防止因电流短路造成一些绝缘电气设备受到机械上故障或损坏状况,或是制止电流所产生电动应力作用下,使电动机绕线、延伸电路绕线以及其他的零件、设备受到损坏和故障。

(2)热保护:防止因为电动机运行时间长、电动机运行超载时间过长所产生出来大量热量的问题,因为这一些热量让绕线温度超过所规定正常温度范围最后破坏电动机运行,或让电动机未能正常运行工作。

(3)过渡保护:防止电动机在运行前出现无法准确的启动,又或者是电动机在运行前负载过大所形成电流量会破坏传动机的零件,让电动机受到故障、损坏状况。

(4)欠电保护:防止电动机电源电压下降过低,让电动机运行过程中,转速也慢慢降低甚至是停止运行造成电气设备的损坏、电路受损、故障的情况。

2电力拖动系统稳定运行的充要条件

众多电力拖动、电机和拖动、电机学资料及参考书中均给出一结论:电力拖动系统稳定的充要条伯为在T=TL外,。可是对于这个条件几乎示有证明或解释。以下内容对此条件作一些简单的说明。

2.1必要性

T=TL此条件表明在同一Ton平面作出电力拖动系统中电动机的机械特点与生产机械负载转矩特点两条曲线一定要有交点,系统可会运行稳定。如果未有交点则系统不可能会稳定。

2.2充分性

微分可近似以微小增量进行表示,即电力拖动系统稳定运行的充分条件可以近似表示:T=TL处,。以下对此条件作出解释性的说明:

(1)当△n&gt;0,即系统为加速,并且满足了的条件。同时在不等式两边乘上大于0的△n,不等号方向保持不变,有△T&lt;△TL,即:T+△T

(2)当△n&lt;0,即系统为减速,并且满足了的条件。同时在不等式两边乘上小于0的△n,不等号方向转变,有,即。也根据电力拖动系统运动方程式可知系统为加速,最后系统达到新平稳以及稳定运行。

2.3系统稳定性的分析

按照上面条件的进行判断他励立直流电动机拖动恒转矩负载情况,知道△n&gt;0,△T&lt;0,满足了的条件,系统那可以稳定的运行。通过此项内容可判定各类电力拖动系统是不是处于稳定的状态中。

3结束语

通过上述的分析,可得出以下结论:正常工作中的他励直流电动机带三种典型的系统都可稳定运行;异步电动机如果在机械特性的工作带三种典型负载中也可运行稳定,可是如果在机械特性的非工作段中只有泵类负载时系统才可稳定;如果是因为电枢反应去磁作用强,导致他励直流电动机机械特性上翘,三种典型负载系统都不能稳定运行。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

《电力拖动控制线路与技能训练》实训中故障检测方法的分析

在《电力拖动控制线路与技能训练》的实习教学中,有相当多的学生在安装完控制线路后,对所接电路是否正确没有信心,不敢通电试车;当线路出现故障时又不知如何下手去处理。本文着重介绍电阻测量法、短接法这两种简单又安全的检测方法。

因电阻测量法断电操作,学生觉得安全;而短接法结果比较直观,所以这两种方法大受欢迎。下面就讨论这两种检测方法在《电力拖动控制线路与技能训练》实习教学中的应用。

一、电阻测量法

在实训中,不少学生在控制线路安装完后会立即想到通电试车,但又怕通电不成功而遭到同学的耻笑,心里很矛盾。此时如果能有合适的检测方法帮助他自检,不仅可以减少失败率,而且一旦成功,带给学生的会是更高的学习兴趣和自豪感,还能增强他们进一步学习的信心。因为此时电路没有通电,所以电阻测量法是最好的检测方法。

要想测量时思路清晰,学生首先要多识读电路图,会分析电路的控制原理,同时掌握基本的测量方法。下面以接触器联锁正反转控制线路为例来讲解,电路图如图1,接触器选择CJ10-20。

测量时通过按下按钮、接触器等元件来模拟控制元件的工作,根据各支路的通断,从万电表所指示的阻值变化来判断安装的线路是否正确。

1.安装前先测量各元件是否完好,坏的要修理好,修不好的要更换,同时要测量并记下所用交流接触器KM1、KM2线圈的直流电阻值,因为不同型号的接触器具体的阻值有较大差别,如常用的CJ10-20交流接触器线圈直流电阻约1800Ω。

2.万用表选用合适的档位,档位过大使示数太小、容易误判是短路,档位过小使示数很大、误判为开路,严重会影响到测量的准确性;一般选择×10Ω档或者×100Ω档。

3.用万用表电阻档测量熔断器FU1、FU2、FU3,应该是电阻为0Ω,若不导通,则更换熔体或重新拧紧熔断器的瓷帽直到导通良好。

4.在自检测量时把万用表的两根表笔分别接在控制电路的起点即FU2的U11、V11两点(或是FU2的出线点0、1两点),万用表的读数指示为∞(如果电阻为0Ω,则电路存在短路;如果电阻为1800Ω或900Ω,则有可能是自锁触头或启动按钮接错)。

(一)控制电路的检查(电路正常的万用表示数)

1.按钮功能检查

(1)正转控制检查

①按下启动按钮SB1→万用表指针读数指示约1800Ω(正转控制接触器KM1线圈回路接通)。

②同时按下停止按钮SB3→万用表指针读数指示∞(正转控制接触器KM1线圈回路被切断)。

③松开SB3,同时按下SB2→万用表指针读数指示约900Ω(KM1、KM2两个控制回路并联)。

④SB1、SB2、SB3同时按下→万用表指针读数指示∞(正、反转控制回路同时被切断)。

(2)反转控制检查

①按下启动按钮SB2→万用表指针读数指示约1800Ω(反转控制接触器KM2线圈回路接通)。

②同时按下停止按钮SB3→万用表指针读数指示∞(反转控制接触器KM2线圈回路被切断)。

③松开SB3,同时按下SB1→万用表指针读数指示约1000Ω(KM1、KM2两个控制回路并联)。

④SB1、SB2、SB3同时按下→万用表指针读数指示∞(正、反转控制回路同时被切断)。

2.自锁和互锁检查

(1)正转控制

①按下KM1触头支架→万用表指针读数指示约1800Ω(接触器KM1常开辅助触头3、4两点接通KM1线圈控制回路)。

②同时按下SB3→万用表指针读数指示约∞(接触器KM1线圈控制回路被切断),则自锁正常。

③松开SB3,同时按下KM2触头支架→万用表指针读数指示约∞(KM1线圈回路被KM2常闭辅助触头4、5两点切断,KM2线圈回路被KM1常闭辅助触头6、7两点切断),则互锁正常。

(2)反转控制

①按下KM2触头支架→万用表指针读数指示约1800Ω(接触器KM2常开辅助触头3、6两点接通KM2线圈控制回路)。

②同时按下SB3→万用表指针读数指示约∞(接触器KM2线圈控制回路被切断),则自锁正常。

③松开SB3,同时按下KM1触头支架→万用表指针读数指示约∞(KM2线圈回路被KM1常闭辅助触头6、7两点切断,KM1线圈回路被KM2常闭辅助触头4、5两点切断),则互锁正常。

(二)主电路的检查

主电路的检查一般是在控制电路检查完后进行,主要目的是为了检查主电路是否存在短路。在检查主电路时由于电动机每相绕组的直流电阻较小,一般在10Ω以下,电阻档应该选择×1Ω档。接上电动机后按各接触器的工作顺序按下接触器触头支架模拟接触器工作,同时用万用表测量总开关出线点U11、V11、W11两两间的电阻,电阻大小应该相等且为电动机任意两相间电阻。若电阻为零,说明主电路出现短路;如果电阻较大或∞,说明主电路存在接触不良或开路。

在电路图中,假设电动机M的绕组是Y形连接,每相绕组电阻为8Ω,测量步骤如下。

1.按下KM1触头支架,用万用表的两根表笔分别测量U11-V11、U11-W11、V11-W11间的电阻,读数应为16Ω。

2.按下KM2触头支架,用万用表的两根表笔分别测量U11-V11、U11-W11、V11-W11间的电阻,读数应为16Ω。

在此图中为了检查反转时KM2进、出线的U相W相是否换相,要同时按下KM1、KM2触头支架进行检查。U11-V11、V11-W11间的电阻,读数应为12Ω(此时U相绕组与W相绕组并联后跟V相绕组串联);U11-W11间电阻为零(由于反转时KM2出线端U相与W相要换相)。

经过测量后若电阻值符合以上规律,电路接线基本正确没有存在严重的故障(短路),通电成功率很高,同时学生在测量过程中也提高了分析判断电路的水平。最后要提醒,在接通电源后通电试车前应该用电压测量法测量各熔断器间的输出电压是否正常,若不正常要找出原因;当控制电路能正常控制后,一定要测量连接电动机的电源输出端子的电压是否正常,以免电动机通电时缺相。

二、短接检测法

所谓短接法,就是用一根绝缘良好的导线,把所怀疑的断路部位短接,如短接过程中电路被接通,就说明该处断路。这种方法需通电检测,是检查控制线路断路故障的一种简便、可靠的方法,实际操作中有局部短接法和长短接法两种方法。下面还以接触器联锁正反转控制线路为例来分析。

(一)检测方法

1.局部短接法

此法是一次只短接一个触头来检查控制线路断路故障的方法。

(1)正转控制电路的检测

合上电源开关,按下启动按钮SB1,若KM1不吸合,说明电路有故障。检查前,先用万用表测量1―0两点间的电压,若电压正常,可按下SB1不放,然后用一根绝缘良好的导线分别短接1―2,2―3,3―4,4―5各点间(注意绝对不能短接5―0两点,否则会造成电源短路),当短接到某两点时,接触器KM1动作吸合,即说明故障点在该两点之间。

(2)反转控制电路的检测

合上电源开关,按下启动按钮SB2,若KM2不吸合,说明电路有故障。可按下SB2不放,然后用一根绝缘良好的导线分别短接1―2,2―3,3―6,6―7(注意绝对不能短接7―0两点,否则会造成电源短路),当短接到某两点时,接触器KM2动作吸合,即说明故障点在该两点之间。

2.长短接法

此法是一次短接两个或两个以上触头来检查控制线路断路故障的方法。

以正转控制电路为例,当KH的常闭触头和SB3的常闭触头同时接触不良时,若用局部短接法短接1―2点,按下SB1,KM1仍不能吸合,则可能造成判断错误。而用长短接法将1―5两点短接,如果KM1吸合,则说明1―5这段电路上有断路故障,然后再用局部短接法逐段找出故障点。长短接法的另一个作用是可把故障范围缩小到一个较小的范围。例如,第一次先短接3―5两点,如果KM1不吸合,再短接1―3两点,KM1吸合,说明故障在1―3范围内。可见,长短接法和局部短接法结合使用,很快就能找出故障点。

(二)注意事项

因为短接法是带电检测,所以使用时必须注意以下几点。

1.一定要注意用电安全。

2.只适用于检查控制线路,不能在主电路中使用,且绝对不能短接负载,或压降较大的电器,如电阻、线圈、绕组等的断路故障,否则将发生短路现象。

3.对于生产机械的某些要害部位,必须在保证电气设备或机械部件不会出现事故的情况下,才能使用短接法。

在实际安装检修中,机床电气故障是多样的,各种检测方法可交叉使用,力求及时、熟练、迅速、准确、安全地找出故障点,并加以排除。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

基于可靠性状态监控的电力拖动监理研究

电力拖动作为占据主导地位的动力系统,检修水平的高低直接控制着生产系统的运行水平,从而决定收益水平。通过对检修体制的分析和审视,以实例对比,分析检修体制监理方法,提出在线监测法,提高了电力拖动系统的可靠性。

拖动即指以各种原动机带动工作机械(负荷)产生并完成运动,电力拖动即以电力为原动力的拖动系统。在各产业中,电力拖动提供了90%以上的原动力,在生产流程中占据基础而重要的核心点位。EPRI(ElectricPowerResearchInstitute,美国电力研究协会)2011年的报告指出:全美电力拖动系统消耗了19%的总能源,57%的电力能源;制造业中电力拖动消耗了70%以上的电能;过程工业中电力拖动消耗的电能占90%以上。每年度成本核算中,附加消耗分布为停产损失93.6%,附加能量消耗3.1%,电力拖动寿命降低1.2%,常规消耗2.1%。状态检测新方法的提出,有益于进一步降低维护及衍射费用,提升生产效率。

1电力拖动系统设备检修体制衍射

1.1事后维修RM/BM

特点是:“任其损坏”Reactive(Break-Down)Maintenance。

优点体现在:不必投资在状态监测上,不会出现过度维修,适用于少数非重点设备。缺点为:无法预测事故停机,产生设备二次损坏及灾难性后果,生产损失,高额维修费用,管理失控。

1.2预防维修PM/TDM

要点在于“定期体检”PreventiveMaintenance。优点体现在维修以可控制的方式在方便的时间进行,减少意外事故,有效避免灾难性事故,可更好的控制备件,节约资金。缺点体现在状态良好的设备也被频繁检修(维修过盛),维修导致的损伤可能大于维修的益处,仍存在计划外故障停机,没有针对不同设备进行优化与寿命分析。

1.3预测维修PdM

预测维修即PredictiveMaintenance,要点在于“没有故障就不修”。优点在于:减少意外停机,仅在需要时购买和使用所需备件,只需在适当时候进行维修。缺点在于:监测仪器、系统、服务、人员花费,不能延长设备寿命。

1.4主动维修PAM

即ProactiveMaintenance,要点在于“查明根源,精确维修,一切基于可靠性”。优点在于:设备寿命延长,设备可靠性增加,更少的故障及二次损坏,停机时间减少,总维护费用降低。缺点在于:监测仪器、系统、服务、人员花费,要求特殊技能,需要更多时间进行分析,全体员工改变观念

2状态监测朝向

2.1当前状况分析

EPRI报告中指出:一个新的资产管理的平台提高生产能力,依靠运行在收支平衡之上,生产中断不可容忍,世界级的生产运营需要可靠性维护。对应的管理策略应为合理利用现有设备,增加生产速度提高质量,增加有效生产时间,降低成本。维修部门从单纯的维修,逐渐转变成为确保企业生产能力的高级职能单元,维修费用占企业生产总成本的4%到14%,维修费用所占比例大于企业利润率。故障停机异常昂贵,远远超过维修费用。

2.2状态监测的目的

保护系统(保障运行,避免事故造成二次损伤)——预知维修(提前预警,减少非计划停机事件)——故障诊断(指导维修进程,实施精密维修)——根源分析(有目的地提高设备可靠性)。

2.3案例分析

美国总统轮船公司2001年8月16日安装检修状态监控系统。2001年8月21日TC1轴承失效(已使用10,000小时)。在海上更换轴承,耽搁时间。二次损伤,造成叶片和迷宫密封损伤(价值$180,000)包括产量损失与人工费用。到达港口后,更换整个轴系,浪费时间。

同样在轮船公司的案例中,预测维修经济效益评估可知,VTR714轴承每套USD20,000to25,000;VTR714轴系每套USD120,000to150,000。已知更换轴承推荐时间为10,000小时(16个月),17条船,实行状态监测4年,轴承更换时间由10,000小时提高到20,000(有些轴承达到30,000小时)。总的价值体现为:17×3台涡轮增压器xUSD20,000=USD1,020,000,其中未计算节省时间与人工的效益及二次损伤费用

3RCM

RCM战略即StrategyforRCM,包括设计与改造、设备与备件采购、备品备件库存保养、安装调试、操作与日常保养、运行调度、维修维护。衍射流程为设备改造—提高运行寿命—状态监测日常维护保养—状态监测—有计划的停机—定期维修—备用策略—事后维修。

RCM手段(InstrumentforRCM)包括红外诊断静态/动态电气诊断、机械振动分析、激光对中/现场动平衡、润滑油品分析、超声诊断、腐蚀检测/探伤和实现静态检测、动态巡检、在线监控

RCM收益(BenefitfromRCM)主要有提高产量(2-40%),减少维修费用(7-60%),提高产品质量(重新回炉生产&amp;废品率减少5-90%),延长设备寿命(&gt;1-10xlifeextension),减少零配件库存(10-60%),增加库存周转率(upto75%),减少成品库存,降低能耗(5-15%),提升生产安全及环境保护。

4故障分布与测试

4.1故障分布

根据EPRI的报告:电力拖动故障的53%源于机械原因,如轴承故障、不平衡、松动等;47%源于电气原因;这其中,10%源于转子,如铸件缺陷导致的不平衡气隙、断条等;37%源于定子绕组。阻抗不平衡导致的电力拖动系统效率的降低。阻抗不平衡导致功率因数的降低。阻抗不平衡导致电力拖动损耗。阻抗不平衡导致温度上升。附加的温升导致电力拖动系统寿命的降低。

4.2电气测试

静态电气测试SET包括:欧姆表/毫欧表、绝缘电阻计(DA/PI)、

高压绝缘测试仪、LCR测试仪、浪涌测试仪、静态电路分析(MCA)。

动态电气测试DET包括:电压表、安培表、功率表、数据采集器、电源质量分析仪、动态效率仪。

其他还有动态电信号分析(ESA)、动态机械测试DMT、红外分析、振动分析、超声诊断。

5电力拖动监测与管理系统的建立

维修策略的优化通过监控点的系统建立得以实现预知维修与监测进程,需要以下为电力拖动状态监测的时间间隔,以月为单位。台湾麦寮电厂拥有7台600MW火力发电力拖动组2台,12MW柴油发电力拖动组(备用)。实现的技术服务有SPMIntroduction(1998)、CMS用于涡轮增压机(1998)、便携式仪器A30-3(1999)、诊断服务(2001)。现在装备4台A30-3,整体监控点数7600点,远程监控2100点,“VCM+BMS”56点,“MG4toAMStoPRO46”软件72点。下一步装备6台Leonova,远程监控1445点,“MG4toAMStoPRO46”136点。通过系统的故障检点监测成形,有效地实现了检修管理技术的提升。

6结束语

电力拖动系统中检修水平的提升,除了依托于设备管理人员的技术水平外,通过在线检测方法,以先进的检测检修管理技术可以实现更加优化的资源配置和生产效率。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接