工业伺服节能改造,关于异步伺服节能器信息聚合页,专注于异步伺服节能器:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
节能改造关注问答
1、

高压电机启动方式

电机容量小于电源容量且1000KW以下的可直接启动,这时的冲击电流是额定值的3-6倍(当然同步电机的直接启动指的是同低压的一样,先异后同等方法)。为了防止冲击电流过大,对于大电机必须考虑减少启动电流的启动方式:有串电抗启动,变频启动,液力偶合器启动等多种方式。有复杂有简单。

高压电机要实现调速,主要采用三种方式:

(1)液力耦合器方式。即在电机和负载之间串入一个液力耦合装置,通过液面的高低调节电机和负载之间耦合力的大小,实现负载的速度调节;

(2)串级调速。串级调速必须采用绕线式异步电动机,将转子绕组的一部分能量通过整流、逆变再送回到电网,这样相当于调节了转子的内阻,从而改变了电动机的滑差;由于转子的电压和电网的电压一般不相等,所以向电网逆变需要一台变压器,为了节省这台变压器,现在国内市场应用中普遍采用内馈电机的形式,即在定子上再做一个三相的辅助绕组,专门接受转子的反馈能量,辅助绕组也参与做功,这样主绕组从电网吸收的能量就会减少,达到调速节能的目的。

(3)高低方式。由于当时高压变频技术没有解决,就采用一台变压器,先把电网电压降低,然后采用一台低压的变频器实现变频;对于电机,则有两种办法,一种办法是采用低压电机;另一种办法,则是继续采用原来的高压电机,需要在变频器和电机之间增加一台升压变压器。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

浅议电动机常见故障的分析与检修

为保证时机的正常工作对运行的电动机要进行检修,对于电动机的运转环境要做到防砸、防淋、防潮。对于环境不良,经常挪动、频繁起动、过载运行等要加强日常维护和保养,及时发现和消除隐患。

一、电动机电气常见故障的分析和处理

(一)接通后,电动机只嗡嗡不起动。可能原因:电源没有全部接通成单相起动;电动机过载;被拖动机械卡住;绕线式电动机转子回路开路成断线;定子内部首端位置接错,或有断线、短路。处理方法:检查电源线,电动机引出线,熔断器,开关的各对触点,找出断路位置,予以排除;卸载后空载或半载起动;检查被拖动机械,排除故障;检查电刷,滑环和起动电阻各个接触器的接合情况;重新判定三相的首尾端,并检查三相绕组是否有灿线和短路。(二)电动机起动困难,转速低。可能原因:电源电压较低;原为角接误接成星接;鼠笼型转子的笼条端脱焊,松动或断裂。处理方法:提高电压;检查铭牌接线方法,改正定子绕组接线方式;进行检查后并对症处理。(三)电动机使用时超温。可能原因:电源电压过低,电动机在额定负载下造成温升过高;电动机通风不良或环境湿度过高;电动机过载或单相运行;电动机起动频繁或正反转次数过多;定子和转子相擦。处理方法:测量空载和负载电压;检查电动机风扇及清理通风道,加强通风降低环温;用钳型电流表检查各相电流后,对症处理;减少电动机正反转次数,或更换适应于频繁起动及正反转的电动机;检查后遗症处理。(四)动电机运转时噪声大。为了调整滑差电机动平衡,其电枢和磁极转子的两端分别装有配重装置。如果这部分装置稍有松动,那么滑差电机在高速转动时就会偏离原?的位置。故障如果发生在主传动电机的外瑞面,就会造成电枢和磁极转子的局部摩擦,使噪声加大。这时就需要停机修理,恢复电枢和磁极转子的动平衡,并重新找好原动平衡配重的位置并将其固定好,使主传动电机正常运转。通风不良。如风扇脱落、通风道堵塞等。过载。致使电流过大而使定子绕组过热。定子绕组匝间短路或三相电流不平衡(五)动电机制动电磁离合器烧毁。必须保持胶印机制动离合器的磁轭、衔铁、摩擦片等部位的清洁,无油污和任何杂物。工作时间一长、接触不良,而且摩擦片中的这些杂质加大了离合器在工作时的摩擦负荷。电气元件由于接触不良而不吸合,使其温度升高,制动电磁离合器线圈的绝缘便会过早受到损害,以致最后被烧毁。因此要特别注意维护保养,离合器散热通风,减少损耗,降低工作温度,延长电气元件使用寿命。(六)绝缘电阻低。可能原因:绕组受潮或淋水滴入电动机内部;绕组上有粉尘,油圬;定子绕组绝缘老化。处理方法:将定子,转子绕组加热烘干处理;用汽油擦洗绕组端部烘干;检查并恢复引出线绝缘或更换接线盒绝缘线板;一般情况下需要更换全部绕组。(七)电动机外壳漏电。可能原因:电动机引出线的绝缘或接线盒绝缘线板;绕组端部碰机壳;电动机外壳没有可靠接地。处理方法:恢复电动机引出线的绝缘或更换接线盒绝缘板;如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;按接地要求将电动机外壳进行可靠接地。(八)电动机运行时声音不正常。可能原因:定子绕组连接错误,局部短路或接地,造成三相电流不平衡而引起噪音;轴承内部有异物或严重缺润滑油。处理方法:分别检查,对症下药;清洗轴承后更换新润滑油为轴承室的1/2―1/3。(九)电动机使用时发生振动。可能原因:电动机安装基础不平;电动机转子不平衡;皮带轮或联轴器不平衡;转轴轴头弯曲或皮带轮偏心;电动机风扇不平衡。处理方法:将电动机底座垫平,时机找水平后固牢;转子静平衡或动平衡;进行皮带轮或联轴器校平衡;校直转轴,将皮带轮找正后镶套重车;对风扇校静。

二、电动机机械常见故障的分析和处理

(一)定、转子铁芯故障检修。定、转子都是由相互绝缘的硅钢片叠成,是电动机的磁路部分。定、转子铁芯的损坏和变形主要由以下几个方面原因造成。1、轴承过度磨损或装配不良,造成定、转子相擦,使铁芯表面损伤,进而造成硅钢片间短路,电动机铁损增加,使电动机温升过高。2、拆除旧绕组时用力过大,使倒槽歪斜向外张开。3、因受潮等原因造成铁芯表面锈蚀,此时需用砂纸打磨干净,清理后涂上绝缘漆。4、因绕组接地产生高热烧毁铁芯或齿部。可用凿子或刮刀等工具将熔积物剔除干净,涂上绝缘溱烘干。5、铁芯与机座间结合松动,可拧紧原有定位螺钉。若定位螺钉失效,可在机座上重钻定位孔并攻丝,旋紧定位螺钉。(二)轴承故障检修。转轴通过轴承支撑转动,是负载最重的部分,又是容易磨损的部件。1、故障检查。运行中检查:滚动轴承缺油时,会听到骨碌骨碌的声音,若听到不连续的梗梗声,可能是轴承钢圈破裂。轴承内混有沙土等杂物或轴承零件有轻度磨损时,会产生轻微的杂音。拆卸后检查:先察看轴承滚动体、内外钢圈是否有破损、锈蚀、疤痕、是否磨损等。2、故障修理。轴承外表面上的锈斑可用砂纸擦除,然后放入汽油中清洗;或轴承有裂纹、内外圈碎裂或轴承过度磨损时,应更换新轴承。更换新轴承时,要选用与原来型号相同的轴承。

总之,电动机具有结构简单,运行可靠,使用方便,价格低廉等特点。它在我们的生活中用途及其广泛,对于日常检修,及故障的排除尤为重要。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

用单片机产生矩形波经放大电路放大后驱动电机

采煤机再制造工艺实践工作为今后采煤机的再制造以及煤机装备的循环利用打下了坚实的基础。控制模块设计与分析,硬件控制模块设计采用N沟道MOS管IRF540驱动,该电路功耗小,驱动能力较好,成本较低,在PWM输出端与驱动端之间加入了光电耦合器,使控制电路与驱动电路隔离,有效保护了控制装置。

PWM输出模块PWM相对线性控制具有节能、易控制、提高电机运行效率的特点,采用PWM电路控制电机。用单片机产生矩形波,经放大电路放大后驱动电机。该方案优点是不需要另搭外围电路,通过编程即可改变输出矩形波占空比,从而控制电机。PWM产生及占空比控制,使用单片机产生PWM时,本文先后采用了两种方法,一种是编写延时由直接输出,另一种是使用定时器,通过周期延拓的方式输出PWM波。但是IO口直接输出的方式在控制占空比时不够精确,因此而采用键盘控制时,使用了外部中断来控制占空比。

使用了三个独立键盘,分别控制占空比增加、占空比减小以及特定占空比(45°时的占空比)。使用单片机、步进电机验证了单片机控制模式方案设计,采用的测试仪器有示波器、数字万用表、秒表等测试设备。测试结果表明当加占空比键按下后,转动角度值变大;减占空比键按下后,转动角度值值变小。实验证明占空比控制非常重要,也证明了PWM波的频率对响应速度有很大影响,同时验证了方案的可行性,为微量注射泵控制系统设计具有一定的参考价值。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


4、

实现土层受扰动信号的远程采集以及盾构机刀盘的多电机同步驱动

综合试验台的设备组成掘进机试验台主要分为两部分:土箱加载部分及盾构机本体部分。土箱加载部分对实际掘进土质状况进行模拟,盾构机本体部分用来完成掘进施工。综合试验台的底层信号掘进机试验台土箱加载部分的信号主要是由压力传感器与位移传感器组成。而且这两类信号都不是标准信号,需要进行前期信号处理,再进行远程传输。盾构机本体部分的信号,大多是标准信号,较容易采集。

监控系统的组成由于盾构机的控制都是由PLC来完成,为了保证系统的统一性,基于全集成控制的理念,系统组成如下:土箱加载部分和盾构机本体部分,各用一套PLC、各用两套上位监控软件;后台数据分析用服务器一台。本设计用Profinet与Profibus实现土层受扰动信号的远程采集,以及盾构机刀盘的多电机同步驱动。使用交换机可以把网络分成盾构机本体、土箱加载部分和数据库管理三个网段,将负荷分隔开来,使整个网络性能增强。

盾构机本体部分的开关量与模拟量信号,通过ET200S采集到现场总线Profibus;土箱加载部分的土层压力信号,通过信号放大处理由ET200M采集到现场总线Profinet;土箱加载部分的土层位移信号,经过信号处理,通过485转换器采集到现场总线Profibus。通过现场总线Profibus,实现以PLC为控制器、以S120为执行器的盾构机刀盘的同步驱动控制。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

双速电动机在汽轮机循环水系统中的作用


在汽轮机循环水系统中,动叶可调泵比定速泵能够更加适应负荷、水位、水温和真空的变化,通过调节叶片角度来改变循环水量,可使汽机能够保持在较好的工作状态,并且循泵能一直保持在高效区运行。

优化措施:将定速泵改为动叶可调泵,叶片角度调节要能够快速电动调节,才能更适应电厂调峰、冷端优化的需要。

循环水系统由单独供水改为母管制供水后,虽然运行方式灵活了一些,但仍然偏少。为了获取更灵活的运行方式及节能减排,一些电厂将循泵的电动机改为双速电动机,这样,循环水量的调整范围更广,更能满足国家节能减排的要求。

电动机具有代表性的运行方式为冬季6个月“两机两泵”高速运行,春秋季3个月采用“两机三泵”高速运行,炎热季节的3个月采用“两机四泵”高速运行。循环泵应用双速改造后,冬季6个月“两机两泵”低速运行,春秋季3个月采用“两机三泵”高、低速配合运行,炎热季节的3个月采用“两机四泵”高、低速配合运行。

优化措施:将循环水系统中的部分定速泵改为双速泵,并通过优化调整试验和优化方法(泵容量、个数较多时,可采用遗传算法寻优)确定不同运行方式的切换时机。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

变频调速产生谐波对拖动电动机的影响分析

我国《节约能源法》第39条规定:“将变频调速列入通用节能技术加以推广”。在工矿企业众多的电力拖动系统是采用异步电动机拖动的,在电力拖动系统的节能技术改造中,除了优化托动系统装置的设计外,还要大力推广应用变频调速技术对拖动电动机进行节能技术改造,从而实现异步电动机的节能运行。

在变频调速的电力拖动系统中,变频器属非线性设备,其运行中必然会产生高次谐波。当变频器向拖动电动机供电时,必然会将含有颇丰的高次谐波电流输入电动机,从而对电动机造成不利的影响。为此,在对电力拖动系统实施变频调速技术改造中,还应采取相对应措施,消除谐波带给电动机的不利影响。

1变频调速的优越性

1.1变频器的调速特性好

实现异步电动机的变频调速,是发明异步电动机百年以来人们翘首以待的“世界之梦”。通过科技人员的不懈努力。提高和完善,其调速工作特性毫不逊色,即与直流调速系统相比,某些方面还超过直流调速。由于频率本身是数字量,即可实现在不需外部反馈的情况下,就能获得很硬的机械特性。同时还具有调速精度高、平滑、性能稳定、维护简单,易于实现生产过程的自动控制等特点。

1.2变频调速拖动系统故障率低

异步电动机拖动系统,可在不更换原电动机条件下,实施变频调速技术改造,即在电动机与电源之间接入相对应型号变频器,就能获得最佳调速效果。其拖动系统的故障率低,是得益于异步电动机的结构简单,转子回路内的电力不需从外部接入,故而出现故障几率极少。

1.3变频调速拖动系统可实现软起动

异步电动机若采用全压直接起动,其起动电流可达额定电流的5-7倍,必将对拖动系统或电网造成不良的影响。而采用变频调速起动,其起动电流一般不会超过额定电流的1.5倍。同时起动平稳,无冲击,实现异步电动机真正意义上的软起动。

1.4变频调速会延长设备使用寿命

变频调速技术在风机、泵类负载中使用,不仅能按负载运行要求实现转速调节,而且起动过程中振动和机械噪音很小。变频调速用于一般生产机械的电力拖动中,在起动、停止、减速、加速等工况下,均不会产生振动和冲击,故而可延长设备使用寿命。

1.5变频调速在加减速时转矩平滑

变频调速技术应用于输送机的节能改造中,在运行过程中若负载需加速、减速时,具有性能良好的软起动效果,并达到转矩平滑。尤是重载工况下起动时,可提升输出转矩,这是普通起动器所无法达到的效果。

2变频器产生谐波对拖动电动机影响

异步电动机由于结构简单、运行可靠、维护方便等优点,在工矿企业的电力拖动中得到广泛使用。对电力拖动系统的异步电动机实施变频调速技术改造,可在不更换原电动机条件下实现转速调节。但因变频器是非线性设备,运行中将会产生高次谐波,必将会对其拖动电动机造成不良影响,故而必须采取相应措施加以防范。

按常规设计的异步电动机,通常都是设计在额定频率和额定电压下工作的,只有在额定频率和电压下运行,才能保证电动机轴上的输出转矩,功率达到额定设计值。然而在变频调速工况下运行的异步电动机,因供电频率是个变量,故对电动机实际输出轴功率会有所影响。所以对不同工况下拖动电动机容量的选择,必须充分考虑这个影响因素。

通常使用的异步电动机,在额定功率和温升条件下运行,电动机的运行温度是不会超过设计值的。但在变频调速拖动系统中,由于输入电动机的电流含有颇丰的高次谐波,故而由谐波电流使电动机产生附加损耗。即使在额定频率下长期运行,由于谐波电流的影响也会造成输出转矩降低、效率下降、温升增高等异常等情况。异步电动机运行中,若是温升增高会导致线圈绝缘的挥发和降解加速,介电强度和体积电阻率下降,还可能造成线圈绝缘的炭化而丧失绝缘功能。

变频调速拖动系统中的异步电动机,因受高次谐波的影响,谐波电流所产生的磁场相对于转轴是高速旋转的,它所产生的轴电势比较高,可能会击穿轴承的油膜,使轴电流流过轴承而对轴承造成危害。

异步电动机的线圈间存在着分布电容,高次谐波电压输入时,各线圈之间的电压分担是不均匀的,往往会导致承担高电压线圈的绝缘老化加速,从而使首匝线圈成为绝缘损伤点。在变频调速拖动系统中,变频器输出电压的幅值为标准电压的3倍多,再加上变频器电压变化率(du/dt)很高,它所引起的振荡会使电动机应力变得更大,势必对线圈造成危害。

在开关频率很高的工况下,变频器和电动机之间连接电缆,若是长度过长时会产生驻波,将导致电动机端电压升高,致使电动机线圈承受端电压比电网电压高,这必然会加速线圈绝缘的老化,影响电动机使用寿命。

3变频器产生谐波的防范措施

3.1运用滤波技术消除谐波影响

为提高变频调速拖动系统中异步电动机的运行效率,必须运用谐波技术消除谐波影响。谐波器接在电动机输入端的,称为电动机端滤波;接在变频器输出端的,称为变频器输出滤波。电动机端滤波分为一阶RC串联型和一阶RC并联型两种滤波方式。变频器输出端滤波有四种结构:3.1.1LR并联型;3.1.2二阶RLC低通变频器输出端滤波;3.1.3改进型二阶RLC低通滤波,即把星型联接的阻容电路中性点与变频器直流母线中性点接在一起。该滤波器尺寸小、损耗少、成本较低、值得推广;3.1.4LC与RLC两级串联变频器输出滤波器。

3.2尽量缩短连接电缆长度

缩短变频器与电动机之间联接电缆的长度,为的是避免驻波产生而造成的影响。切勿将连接电缆过长部分盘成圈状放在变频器框内,这种处理方法欠佳,仍会造成谐波干扰。

其次,可在变频器进线电缆端套上约1.5~2m的金属蛇皮管,管皮外壳良好接地,这也是抑制谐波干扰的措施。此外,还可将变频器控制线屏蔽,并做好屏蔽层的良好接地,这也能防止谐波干扰。

3.3变频器和电动机的选用

在实施变频调速技术改造时,为提高电力拖动系统的运行效率,应选用不易输出高反射电压的变频器。若有更换拖动电动机,应选用专用变频器驱动的电动机。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

电子式感应电机软启动研究

为抑制电动机的启动电流,本文对软起动作了研究,主要论述了软启动设备的系统结构及其仿真。

电机起动分为直接起动和软起动。直接起动为全压起动,所用设备简单,投资少,但启动电流大,在配电系统产生较大压降,影响同母线连接设备运行,尤其是起动转矩过大对电机及传动机械产生巨大的冲击,加速电机的老化及机械的损坏。软启动能抑制电动机起动电流,在限定时间内将它驱动到额定转速,并在必要情况下多次连续起动。该过程兼有若干保护功能,当短路、过载、起动超时、欠电压、系统异常等故障时,软启动装置能做出相应防护并发出警示信号。

软启动过程以计算机为工具,利用软件,通过建立输入电动机、电网和负载数学模型,根据选定控制策略作出离线模拟。其中电子式感应电机软启动,选用微处理器和晶闸管电子元件组成启动器控制。

启动器开启时,微处理器发出脉冲加到晶闸管触发极上,控制晶闸管导通角,使晶闸管输出电流电压大小受触发脉冲宽度来决定。缓慢调节微处理器,控制晶闸管输出电压由零缓慢升至全压,此时电动机转速也由零升至额定转速。在发出停机指令后,微处理器监测电压电流和电动机反馈信号,晶闸管可使输出电压按一定要求下降,使电动机由全压逐渐降为零而实现软停止。

实际应用中,软启动具有如下优点:①起动电流小,通过调节起动转矩实现低速起动,频繁起动和软停止。②在起停时过渡自然,不易伤害设备,节电效果良好。③当多台同容量水泵工作,可采用一台电子式软启动器,操作方便。④软启动离线仿真研究可以预知在硬起动过程中电机转速、电流、线电压和其它机械特性,对产品设计和用户使用有重要指导作用。

1电路结构

1.1系统框图

电子式感应电机软启动框图如图1所示。信号采集及对应的处理电路采集同步信号作为相角移动控制基础参考,确保信号正确触发;信号感应电路对信号发生反应,如电流和功率因数角等,为起动控制和保护控制提供必要信息;启动控制电路为软启动选择合适控制策略;保护控制电路对过压、过流等进行监控,确保电机安全运行;相角移动控制电路产生脉冲,控制触发角时刻和大小。

1.2感应电机软启动主电路

软启动器是从速度控制装置得到的,其主电路见图2,三对可控晶闸管形成固态三相电压调节器,通过均匀控制可控晶闸管触发角,灵活的控制电机在额定电压下运行。

1.3控制电路模型

控制电路模型是由4个控制子系统构成。

每个子系统直接由仿真模块建立。在交流电路模块控制角开始时,每相电压为零,同步信号应从电源相电压信号获得。

根据同步脉冲产生原理,可由普通仿真模块组成脉冲发生器模型。笔者采用6同步脉冲发生器,电机起动电流值可以应用RMS模块获得。软启动过程关键要限制启动电流,当电压逐步升高,直到接近给定限制电流时,保持电压不变。

2软启动仿真

2.1感应电机软启动系统

软启动子系统的内部结构,它由两个双向晶闸管封装而成。系统仿真电路图中,三相电源由三个单相电源组成。系统采用鼠笼式感应电机,异步电机测量系统可以测出很多参数,如定子、转子电流,电压等。同步信号采集器将A、B、C三个相电压转化成A-C、B-A、C-B三个线电压输入脉冲发生器。脉冲发生器产生宽脉冲,触发三对双向晶闸管来控制机端电压。触发控制器根据定子电流反馈来控制脉冲发生器触发角。

2.2参数设置

①三相电源:每一相电源电压为380V,频率为50Hz,第一个单向电源的相角为0°,第二个单向电源的相角为120°,第三个单向电源的相角为-120。②电机:视在功率3×746VA,线间电压为380V,频率50Hz,其它参数为默认值。③触发系统:频率50Hz。④仿真时间:3s。

2.3结果分析

设置好参数后,单击运行可进行离线仿真,双击显示器可查看参数曲线。如直接启动时的定子电流和转矩曲线,可知系统启动瞬时,产生较大的冲击量(约为稳定时的10倍),过程变化突然,在0.1s后趋于平稳。并可查看电子式软启动下的情形,可看出定子电流和转矩在启动瞬时冲击明显减弱,变化趋于平缓,有利于系统稳定和保护设备。

3结束语

电子式软启动以计算机为工具,在已知并输入电动机,电网和负载数学模型基础上,根据选定控制策略做出离线模拟。本文通过设计系统框图和仿真模拟电路,得到软启动下电机定子电流和转矩的变化曲线,较好的改善了直接启动所带来的巨大冲击。该方法在小容量电机中得到广泛应用,收到较好的经济效益。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

低压智能电动机保护器的可靠性设计

针对低压智能电动机保护器在实际使用中遇到的各种电磁兼容问题,根据微处理器系统的特点从硬件和软件两个方面,提出了抗干扰方法,获得了良好的EMC性能。

1、引言

电动机作为一种拖动机械因具有结构简单、价格低廉、使用维护方便等优点,在国民经济各个方面被广泛采用。在当代,随着电子技术的发展和智能电动机保护器技术的成熟而普及率越来越高。

智能电动机保护器采用了微处理器技术,不仅解决了传统的热继整定粗糙、不能实现断相保护,重复性差、测量参数误差大的缺点。保护器通过电流来判断断相故障,软件模拟热积累过程的方法来实现过载保护等方法保证了电机的可靠运行,而微处理器强大的扩展性包括开关量输入、继电器输出,4~20mA变送输出、RS485通讯等很好的满足了控制系统的“四遥”功能。

电动机保护器提高了电动机运行的可靠性和系统智能化要求,因此保护器的可靠运行起着举足轻重的作用,同时也对保护器抗外界干扰提出了比较现实的要求。下面就从硬件和软件两个方面提出可靠性设计。

2、硬件可靠性设计

2.1微处理的选择

采用Freescale公司的高性能处理器MC9S08AW60。MC9S08AW60是Freescale公司一款基于S08内核的高度节能型处理器,是第一款认可用于汽车市场的微控制器。可应用在家电、汽车、工业控制等场合,具有业内最佳的EMC性能。

2.2电源端滤波处理

利用电磁原理进行硬件电路滤波是提高保护器EMC的有效方法。线路如下图,经热敏电阻t、压敏电阻RV1、电感L1、L2、差模电容C1、共模电感L3、共模电容C2、C3组成的两级滤波处理,很好的隔离了由于电源端的输入和输出干扰。PTC热敏电阻器的主要用于过流过热保护,直接串在负载电路中,在线路出现异常状况时,能够自动限制过电流或阻断电流,当故障排除后又恢复原态,俗称“万次保险丝”。根据线路的最大工作电流来确定选择。压敏电阻主要用于吸收各种操作浪涌及感应雷浪涌过压保护,以防止这类过电压干扰或损坏各种电路元件。根据设计经受的浪涌电压按照最大允许使用电压和通流容量来选择。其中,L1、L2、C1为抑制差模干扰,L3、C2、C3为抑制共模干扰。L1、L2铁芯应选择不易饱和的材料及M-F特性优良的材料。按照IEC-380安全技术指标推荐,图中元件参数的选择范围为:C1=0.1~2uF;C2、C3=2.2~33uF;L3为几个或几十毫亨,随工作电流不同而取不同的参数值。

按照下面公式计算C2、C3的容量:

Ii=2πfCyU

式中:Ii───允许的交流漏电流

f───电源频率;

U───电源供电电压;

上图为电源端是否使用滤波器,使用瑞士TRANSIENT2000电磁兼容测试仪1000V100KHZ0.75mS条件EFT群脉冲实验,从TEXtronixTDS1012B捕抓到的信号比较,未使用滤波处理的电源输出端产生了尖峰脉冲,会导致微处理器复位,甚至死机。

2.3信号端处理

谐波和电磁辐射干扰会导致保护器误动作,使电气仪表计量不准确,甚至无法正常工作。在电动机控制回路中产生该类干扰源为变频器和现场对讲机。解决的方法有:一是信号输入线胶合,胶合的双胶线能降低共模干扰,由于改变了导线电磁感应的磁通方向,使其感应互相抵消。二是内部线路处理。如下图,采用双差分输入的差动放大器,具有很高的共模抑制比。在输入回路中接RC滤波器、信号的输入和输出端使用专用器件、降低输入输出阻抗、可靠接地和合理的屏蔽等措施。

2.4保护输出端处理

输入输出端采用光电隔离的方法,也是可以消除共模干扰,同时在保护继电器的的输出端并接压敏电阻,有效的提高了继电器的寿命,也降低了由于外部接触器动作对内部的干扰。考虑到客户使用控制电压的不确定性和接触器线圈容量,确认使用MYG14D821。

2.5外部存储技术和看门狗保护电路

使用外置存储芯片X25043,SPI接口。微处理器内置SPI控制模块,方便的与该芯片接口,外部存储技术保证了运行状态和事件的记录。低电压复位和外部看门狗提高了保护器的可靠性。

2.6主体与显示单元通过RS485连接

考虑到使用环境的特殊性和要求的多样性,主体与显示单元之间连接也采用RS485Modbus-Rtu协议连接,提高了显示与控制的可靠性。

3、软件可靠性设计

3.1实时多任务的调度

保护器起着保护电动机的重任,对它的要求是既不能误动,也不能拒动,而且必须快速。实时多任务的调度实际是通过时间片的轮换实现宏观上的多任务效果。对于保护器而言,存在着三个重要的任务,等间隔的交流采样,根据算法得到稳态与暂态电量数据;根据得到的数据判断故障,故障计时、清零和脱扣输出;人机交互界面。下图以一个周波T=20mS,32点采样为例(考虑到快速除法),32次采样总时间为3.2mS,数据计算时间为9.72mS,计时0.36mS,则人机交互的时间为6.72mS。这样的任务调度即满足了保护实时性要求,又较快的响应了参数设置。

3.2交流采样、数字滤波

对于交流正弦信号,一个周期的电压有效值为

U=

根据电工原理中连续周期交流信号的有效值的定义,将连续信号离散化,用数值积分代替连续积分,从而得到有效值与采样值之间的关系。离散化得到

U≈

同理

I=

在对信号多次采样的基础上,通过软件算法提取最逼近真值的数据。这种算法计算连续的周期的交流信号,精度高,抗波形畸变能力强。在使用这种算法时,也可同时采用连续平均值法、中值算法等数字滤波,提高保护器的抗干扰能力。

3.3软件陷阱

程序是固化在微处理器的存储器中,由编译器统一安排,但设计时,设计人员考虑到产品的扩展性,一般留有余量,也因此总有些存储空间会未被使用。当微处理器的PC指针因为干扰被错置时,系统就会出错。软件陷阱就是在不用的存储空间、中断入口、子程序后加入强制跳转指令,让出错的PC指针恢复正常。

方法是:NOP

NOP

JSRMAIN

4、结束语

本文针对低压智能电动机保护器在实际使用中遇到的各种电磁兼容问题,根据微处理器系统的特点从硬件和软件两个方面,提出了抗干扰方法,获得了良好的EMC性能。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

初探起重机电机拖动系统的负载跟踪

在我国科学技术不断发展的今天,各种重型设备的应用性不断增强。起重机作为一种常见的、有效应用的设备,其可以有效的抬起重物,大大节省人力劳动。当然,要实现起重机长期稳定、安全、高效的应用,并不是非常容易的,需要对起重机电机拖动系统的负载跟踪予以合理的设计,有效的控制电机拖动系统,促使电机可以保持相对稳定的状态,为使起重机更好的运行创造条件。对此,本文就起重机电机拖动系统的负载跟踪进行分析和探讨。

引言:

起重机属于起重机械中的一种,其同时也是一种循环间歇运动的机械。对于起重机的应用,主要是将重物提起,将其平移到指定地点后降落物品,紧接着做反向运动,进行下一个重物的运输。起重机整个运作过程中,起重机电机拖动系统发挥巨大作用,其直接决定起重机能否将重物提起,并稳定的放在指定位置。当然,起重机电机拖动系统在具体运用的过程中容易受某些因素的影响,促使电机拖动系统运行不稳定,并且浪费电能。所以,加强起重机电机拖动系统的负载跟踪进行设计,有效的控制电机拖动系统,可以提升起重机电机拖动系统应用性。本文将从起重机电机拖动系统的力学方程分析展开,系统的探究起重机电机拖动系统的负载跟踪设计。

一、起重机电机拖动系统的动力学方程分析

对于起重机电机拖动系统的动力学方程的分析,需要结合起重机起升机构电机拖动系统图,依据相关的动力学原理,科学地、合理地分析,才能够详细地掌握整个起重机电机拖动系统的动力学方程,为后续准确的分析。设计起重机电机拖动系统的负载跟踪提供条件。对此,本文笔者参照某型号起重机起升机构电机拖动系统示意图(如图一所示),展开具体的分析。从图一可以知道分别为中间轴、卷筒、滑轮的传统效率。假设为起重机吊重物起升的速度、为起重机所吊重物的质量、为起重机吊具的质量、为起重机电机转子转动惯量、为制动轮和联轴器的转动惯量。根据动力学相关理论,可以得到关于起重机吊具上钢丝绳张力的公式,即:

在对起重机吊具上钢丝绳张力进行公式计算的过程中,因为是以动力学相关理论为基础,所以本文仅考虑吊具在提重物上升过程中所消耗的电能,对于其他因素所引起的能量消耗在此予以忽视。

二、起重机电机拖动系统的负载跟踪设计

综合上文起重机电机拖动系统的动力学方程式,对于起重机电机拖动系统的负载跟踪的设计主要是利用坐标轴分析的,这可以更为直接的分析电机拖动系统的负载跟踪,为实现起重机电机拖动系统可以稳定、有效应用创造条件。

对于起重机电机拖动系统的负载跟踪的设计,首先设计电机静止正交坐标系与旋转坐标系(如图三所示)。假设电机静止正交坐标系和以定子同步角速度,旋转得到两相旋转正交坐标系MOT,其中M轴与轴夹角为,且。那么,TM坐标系上电机转子磁链的矢量,将会与M轴某一点相交,从而可以实现整个系统的同步旋转。另外,由于在起重机电机拖动系统持续运作的过程中,电机转子磁链的矢量将会一直同M轴相交,这就意味着,转子磁链值与电子转子磁链矢量相等。

利用以上内容完成整个起重机电机拖动系统的负载跟踪设计。为了可以更加准确的、有效的、合理的、科学的完成起重机电机拖动系统的负载跟踪设计,笔者在此引入基于转差角频率的矢量变频控制系统原理图(如图四所示)。从转差角频率的矢量变频控制系统原理图可以了解电机转速计算中,需要运用到转速调节器对定子电流转矩分量予以计算,进而了解MT坐标系的同步旋转角速度。综合以上同步旋转角速度函数公式,以及起重机电机拖动系统实际情况,可以了解整个系统负载跟踪的应用需求。而积分器的因公可以测量出转角频率的矢量的变换角。利用矢量变换角可以得到电压励磁分量和转矩分量,相应的可以利用电压型逆变器对电压进行控制,从而实现起重机电机拖动系统的有效控制,促使电机稳定、安全、有效的运用。

结束语:

起重机电机拖动系统负载跟踪的设计是非常必要的,可以保证电机拖动系统相对稳定的运行,有效的节约电能。从起重机电机拖动系统负载跟踪控制的特点来看,电动机转子容易受到某些因素的影响。所以,在具体设计起重机电机拖动系统负载跟踪过程中,需要分析起重机电机拖动系统的动力学方程,了解转子电压、电流与磁链之间的关系。以此为依据构建电机静止正交坐标系与旋转坐标系,对电动机转子运作中负载转矩、定转速度等方面进行分析,从而科学、合理设计电机拖动系统负载跟踪,为保证起重机电机拖动系统稳定运作创造条件。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接