工业伺服节能改造,关于化工厂节能低碳信息聚合页,专注于化工厂节能低碳:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
节能改造关注问答
1、

直流电机做发电机使用注意事项



上图为直流电机的俯视图,关于直流电机做发电机使用的时候,有以下几点要注意:

(1)因为电枢导磁,故图中线圈内部(黑色)不存在电磁感应现象。磁场只存在于电枢外部和电枢铁芯中。

(2)电刷与正负极出线固定,换向器随转子做逆时针运动,如图。

(3)一般来说一个换向器对一个电刷,也有3个左右换向器对一个电刷。

结论:

(1)关于直流电机做发电机时候正负极的判断:蓝色铁芯导慈,故图中黑色部分不存在磁场,所以只在蓝色铁芯外做切割磁感线运动,故电动势只产生于蓝色铁芯外部。

然后图中逆时方向运动,电动势如图所示,以图中正极为例的话,电动势流向电刷,再由电刷流向外部电路,这和电源正极的特点一样,故为正极。同理可知右边部分为负极。

(2)输出电动势为关联各换向片的电动势和,此处关联是感应电动势方向与正负极关联。

(3)关于正负极为什么位于图中位置时,所得电动势最大,是因为如果不是图中的位置,会有正负电动势在同一极的关联方向相互抵消。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

电机的能耗等级分为几级,能效划分标准

电机的能耗等级分为几级,能效划分标准

电机是各种设备的动力驱动设备,常常应用在化工厂,煤矿,冶金,公用设施等多个行业和领域,是用电量最大的耗电机械。为了响应国家十二五计划,和企业自身经济利益考虑,节约用电,减少成本,选择一款高效节能电机是十分重要的。

但是我们在购买电机是却不知道他们的能效是如何划分的。那个如何判断电机的能效等级对我们来说就显得困难起来,不过经过我们下面的讲解,我们就会明白防爆电机的能效是如何划分了。

电机能效标准的划分标准在不同的时期按照国家的标准是不一样的,依据不同国家的标准也是不同的。仅以我们国家来说,电机能效等级的划分也是随着时间的变化会变化的。2006年我国发布了GB_18613-2006_电动机能效限定值及能效等级评定的标准。


GB_18613-2006_电动机能效限定值及能效等级

但是到了2012年,随着我国发展与国际化的同步,我们国家又发不了GB_18613-2012_电动机能效限定值及能效等级判断的标准,如下表


GB_18613-2012_电动机能效限定值及能效等级

我们不难看出在某些型号上会有下表的情况


就拿现在节能防爆电机YBX3来说,在GB_18613-2006_电动机能效限定值及能效标准中是一级能效,但到了GB_18613-2012_电动机能效限定值及能效等级标准中是二级能效。而YB2系列带电机在GB_18613-2006_电动机能效限定值及能效等级评定的标准中是二级能效类电机,但是按照2012的电机能耗划分标准,就属于三级能耗防爆电机了,属于高耗能电机。当然随着科技的发展,对防爆电机节能的要求的提高,能效标准可能还会变化的,不同时期判断方法的能效等级因此会不一样的。

现在我们以我们国家最新能效标准来说,目前按照GB_18613-2012_电动机能效限定值及能效等级划分标准要求,防爆电机的能效等级划分三级。其中一级能效是最节能的,二级能效防爆电机也是节能防爆电机,当然三级能效就不属于节能防爆电机了。当然在二级和二级以上的防爆电机(暂时一级能效三相异步防爆电动机国内还没有产品,YBX3是最佳选择)都是现在国家提倡使用的,有的地方国家会给予一定的政策补助。对于企业来说在节能用电上每年也会节约一大笔资金。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

水泵电机节能方案

1、采用尼龙平皮带用尼龙平皮带来替换三角橡胶带

简单易行,技术上无特殊要求,只需进行简易计算,更换一副皮带轮即可。若条件允许,把电动机的间接传动,改为直接传动的水泵,可提高效率2~3%。

2、更换节能电动机

①应用Y系列(基本系列)电动机

采用Y型节能电动机,取代60年代J2、JO2产品。采用国际标准,提高效率水平,和堵转转矩,缩小体积,增加对电流噪声,振动的控制,而且还有结构合理,选型美观,通用性好,寿命长等特点。

②采用YX(派生系列)高效率电动机

该系列属低损耗,高效率电动机,机座中心高为H100-H280;功率范围为1.5kW-90kW;极数2、4、6。比Y系列电动机效率平均提高3%,损耗平均下降28.6%,与目前国外高效率电动机水平相当。不过这类电动机售价比Y系列高30%。此种电动机值得年运行时间长,负荷率高的纺织、化工、风机、水泵等选用。

3、水泵电动机的节能改造

①更换为节能风扇电机的通风损耗占总损耗的很大比例,因此,最大限度地降低通风损耗,对节能会有明显的效果。而且对JO2来讲,改造外风扇与风罩不需变动内部任何部件。

②用磁性槽泥(简称CC材料或磁泥)替换普通槽楔,填平电动机定子铁心槽口趋于平滑,经固化后,且与糟壁结合牢固,而成磁性槽楔。从而改善电机槽齿效应,降低了铜、铁、机械、杂散等损耗,给耗能电动机的改造提供了节电新途径。

4、采用较大截面的导线

采用较大截面导线后,不仅处于轻载运行状态,寿命也会大大延长,节电效果显着(采用铜芯电缆等法)。

5、注意轴承和绕组的清洁和润滑

轴承合理润滑与绕组的清洁正确地安装和良好地维护,能使电动机在运行中节能。

润滑脂过量或劣质,会增加摩擦损耗,降低效率;并会使油甩到绕组上,损坏绕组。因此,检修时应适当填充润滑脂,并采用优质锂基润滑脂。与此同时,还要防止潮气和有害气体侵入电动机内部,保持绕组温度在零度以上。

6、采用无功功率自动补偿

水泵电动机的负荷是感性的,其电流矢量滞后于电压矢量。这类负载消耗有功功率外,还消耗无功功率,而消耗无功功率大于有功功率。提高cosφ的办法,是在负载两端并联与感抗性质相反的电容器,用容性无功功率(负的)来抵消感性无功功率(正的)。实际上,电感和电容器中的无功功率波动过程恰好互差180°。即电感线圈吸收能量时,正好电容器释放能量,而电容器吸收能量时(充电过程),正好线圈释放能量。由于并联电容器具有这一特点,被广泛运用在输、变、配等电器设备中提高力率。

补偿方法:在无功功率自动补偿应用中,得出经验公式:电容器的无功运行电流,为电动机负载运行电流的56%。

7、采用S10型节能变压器

电动机力率的提高直接关系到电力变压器的容量型号的合理选用,和无功补偿等诸因素的制约,因此,从节电角度来看。重要的是应尽快以S7、SL7、SZ7、SLZ7系列10~35kV级变压器,取代SL及SL1系列耗能变压器、采用45°全斜接缝,无冲孔,玻璃纤维带绑扎,铁芯选用优质晶粒取向冷扎硅钢片。绕组导线选用缩醛漆包线。以及片状散热器等新材料、新结构、新工艺,它与相同等级老型号变压器相比,具有损耗低,体积小,重量轻,节约电能,节省运行电费等优点。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


4、

步进电机抗干扰能力的分析

在试验机控制系统中,采用工控机测量冲击电压电流波形时,电磁干扰是影响测试结果的重要问题。为了使测量结果尽可能的准确,除了让分压器尽可能的靠近试品接地和在测量电缆末端增设衰减器等常规措施外,在测量回路中采用同轴电缆的平衡接法,能够消除由于地电位的升高而引起的电缆的共模干扰。

两根电缆的长度和波阻抗必须相同,并且首末端同时匹配。通过以上措施,减弱了球隙瞬间放电引起的电磁干扰,消除了地电位的升高引起的共模干扰。

抗干扰能力低是步进电机在控制电路中的一个显著缺点,要保证步进电机稳定可靠工作,必须采取相应的措施保护步进电机及其驱动器。该控制系统在设计时采取了以下必要的保护措施:

1)安装隔离变压器和低通滤波器,防止强脉冲干扰信号串入步进电机的供电电源,烧坏步进电机驱动器的供电模块;

2)遵守“一点接地”原则,将步进电机的PE端、脉动信号的负端、方向信号负端、电源滤波器外壳、步进电机的外壳、以及步进电机和驱动器之间的电缆保护套一点接地并且接在屏蔽箱的外壳上;

3)在脉冲信号和方向信号的输入端增加瞬态电压抑制二极管(TVS),保护步进电机驱动器。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

实现土层受扰动信号的远程采集以及盾构机刀盘的多电机同步驱动

综合试验台的设备组成掘进机试验台主要分为两部分:土箱加载部分及盾构机本体部分。土箱加载部分对实际掘进土质状况进行模拟,盾构机本体部分用来完成掘进施工。综合试验台的底层信号掘进机试验台土箱加载部分的信号主要是由压力传感器与位移传感器组成。而且这两类信号都不是标准信号,需要进行前期信号处理,再进行远程传输。盾构机本体部分的信号,大多是标准信号,较容易采集。

监控系统的组成由于盾构机的控制都是由PLC来完成,为了保证系统的统一性,基于全集成控制的理念,系统组成如下:土箱加载部分和盾构机本体部分,各用一套PLC、各用两套上位监控软件;后台数据分析用服务器一台。本设计用Profinet与Profibus实现土层受扰动信号的远程采集,以及盾构机刀盘的多电机同步驱动。使用交换机可以把网络分成盾构机本体、土箱加载部分和数据库管理三个网段,将负荷分隔开来,使整个网络性能增强。

盾构机本体部分的开关量与模拟量信号,通过ET200S采集到现场总线Profibus;土箱加载部分的土层压力信号,通过信号放大处理由ET200M采集到现场总线Profinet;土箱加载部分的土层位移信号,经过信号处理,通过485转换器采集到现场总线Profibus。通过现场总线Profibus,实现以PLC为控制器、以S120为执行器的盾构机刀盘的同步驱动控制。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

印刷机调整中电机的工作状态

丝网印刷间距调整系统电气包括间距调整电机、固态继电器、浪涌吸收器、终端继电器、交流电源等。与固态继电器接通的直流电源的电压为24V,与间距调整电机接通的交流电源的电压为110V。其中上、下限位传感器的开关量输出端与PLC输入模块连接,按钮开关接在PLC工作电源与PLC输入模块之间,PLC输出模块与固态继电器的线圈相连,PLC输出模块根据输入到PLC输入模块的开关量信号而输出控制信号来控制固态继电器的直流工作电源,固态继电器的触点接入间距调整电机的工作电源回路上,通过PLC程序控制间距调整电机的运转来调整丝网印刷间距,在上、下限位置之间具体的间距值由百分表直接读取。由上、下限位传感器限定丝网印刷间距的调整范围。

浪涌吸收器与固态继电器并联相接后串联接至间距调整电机,用来吸收固态继电器高频通断时产生的浪涌电压。终端继电器与PLC输出模块相连,其触点接入间距调整电机的工作电源回路。

PLC程序利用间隙刹车信号来控制间距调整电机刹车装置,消除传动结构的惯性影响。

当丝网印刷间距为下限时,PLC程序控制仅上升按钮开关能起作用,继而只可以上调丝网印刷间距;反之,当丝网印刷间距为上限时,PLC程序控制仅下降按钮开关能起作用,继而只可以下调丝网印刷间距;当丝网印刷间距处于间距下限和上限之间,则既可上调也可上调丝网印刷间距。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

三相异步电动机调速方式

三相异步电动机转速公式为:n=60f/p(1-s)

从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法

这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法

变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

本方法适用于要求精度高、调速性能较好场合。

三、串级调速方法

串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。

本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

电机拖动中变频调速系统的常见故障及排除措施

电机是一种实现电能量转换的电磁装置,包括电动机和发电机。电机拖动是指由原动机带动生产机械运动,以电动机作为原动机并且按照人们通常给定的规律带动生产机械的运转,就称为电机拖动。电机拖动系统是用电动机来拖动机械运行的系统。

随着计算机和电子技术的发展,PLC、变频器等自动化产品在电机拖动领域得到了广泛应用。电机拖动中采用PLC-变频器调速在近几年得到了推广和普及。随着变频器使用的普及,在日常工作中会经常遇到变频器报警跳闸等故障情况,为了更好地使用变频器,减少设备停机时间,本文总结了一些变频器常见故障及排除措施。

1.变频调速系统的优点

调速范围宽,可实现有精确控制;软启动、软停止的功能降低了机械传动冲击;组件高度集成以及采用可靠性高的低压电器,有效解降低设备故障率,而且容易维护。提高了系统的功率因数和工作效率而且有明显的节能效果。

2.变频器对工作环境的要求

变频器的工作电源电压应相对稳定,环境温度为-10℃~45℃,湿度应在95%RH以下、无腐蚀性气体和导电尘埃等清洁干净的场所。当变频器在电源电压波动幅度大和潮湿高温多尘的恶劣环境下工作时,容易出现过压、欠压、过流、短路等故障。

3.常见故障及排除措施

3.1过电流、过载

一般是由于变频器的输出电流超过过电流检测值(约为额定电流的200%)、变频器的输出电流超过电机或变频器的额定负载能力(约为额定值的160%)。应检查输入三相电源是否出现缺相或不平衡、电机接线端子(U、V、W)电路之间有无相间短路或对地短路;检查电机和编码器电缆及相序是否正确;检查电机功率是否匹配、在电机电缆上是否含有功率因数校正电容或浪涌吸收装置、变频器输出侧安装的电磁开关是否误动作;检查变频器的加速时间以及变频器的参数设定是否正确。

3.2过电压

一般是由于变频器的中间电路直流电压高于过电压的极限值。应检查电源电压是否在规定范围内、变频器的减速时间是否设置过短,如过短,延长减速时间;是否正确使用制动单元、降低负载惯量或放大变频器容量。

3.3欠电压

一般是由于变频器的中间电路直流电压低于欠电压的极限值。检查电源电压是否在规定范围内、电源是否存在停电、瞬间停电、主电路器件故障、接触不良等情况、供电变压器容量是否合适、系统中是否存在大启动电流的负载。

3.4接地故障

一般是由于变频器输出侧的接地电流,超出变频器的整定值。检查电机和电机电缆的对地绝缘是否正常。

3.5输入电源缺相

一般是由于变频器直流环节电压波动太大输入电源缺相。检查变频器的供电电压是否缺相、输入三相电源电压不平衡度是否超过4%、负载波动是否过大、变频器的三相输入电流是否平衡。

3.6输出缺相

一般是由于变频器检测输出某相无输出电流,而另两相有电流。检查电机、变频器和电机之间的接线;检查变频器三相输出电压是否平衡。

3.7过热故障

一般是由于变频器的散热器温度,超出变频器的整定值。检查环境温度是否超过标准;检查变频器的散热风机工作是否正常,散热风道有无堵塞;检查变频器散热器的温度显示值。

3.8整流模块损坏

一般是由于电网电压或内部短路引起的,在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有影响的设备等。

3.9逆变模块损坏

一般是由于电缆或电机损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。在确定无任何故障下,运行变频器。

3.10上电无显示

一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,也有可能是面板损坏。

4.日常维护检查应注意事项

变频器上电之前应先检测周围环境的温度及湿度,温度过高会导致变频器过热报警,严重时会直接导致电路短路、变频器功率器件损坏;空气湿度过大会导致变频器内部直接短路。在变频器运行时要注意其冷却系统工作是否正常:风道排风是否流畅,风机是否有异常噪音。IP20以上的变频器可直接敞开安装,IP20以下的变频器一般应采用柜式安装,变频柜散热效果好坏将直接影响变频器的正常运行。保护柜尽可能安装在周围温度不易上升的地方;保护柜应通风、防尘、防雨性能良好;频器在柜内应该纵向安装,而且上下、左右方向应留有足够的空间,方便变频器通风散热;柜内应安装温湿度传感器、散热风扇、加热除湿装置;经常检查进风口是否有灰尘及阻塞物,变频器的排风系统如风扇旋转是否流畅都是我们日常检查不可忽略的地方。电动机变压器、电抗器等是否过热以及有异味;变频器和马达是否有异常响声;变频器面板电流显示是否偏大或电流变化幅度太大,输出UVW三相电压与电流是否平衡等。

变频器由多种部件组成,有些部件在长期工作后其性能会逐渐降低、老化,这也是变频器发生故障的主要原因,为了保证设备长期的正常运转,冷却风扇以及滤波电容应定期进行更换。

4.1冷却风扇的更换

变频器的功率模块是发热最严重的器件,其连续工作所产生的热量必须要及时排出,一般风扇的寿命大约为10kh~40kh。按变频器连续运行折算为2~3年就要更换一次风扇,直接冷却风扇有二线和三线之分,二线风扇其中一线为正极,另一线为负线,更换时应注意不要接错;三线风扇除了正、负极外还有一根检测线,安装错误的话会引起变频器过热报警。

4.2滤波电容的更换

中间直流回路滤波电容:又称电解电容,其主要作用就是平滑直流电压,吸收直流中的低频谐波,它的连续工作产生的热量加上变频器本身产生的热量都会加快其电解液的干涸,直接影响其容量的大小。正常情况下电容的使用寿命为5年。建议每年定期检查电容容量一次,一般其容量减少20%以上应更换。

5.定期保养应注意事项

应至少一年进行一次定期检查。检查螺丝钉、螺栓和即插件等是否松动。定期清扫空气过滤器冷却风道及内部灰尘。相间电阻以及输入输出电抗器的对地是否有短路现象,必要时应用绝缘电阻测试仪进行测量,正常应大于几十兆欧。在条件允许的情况下,要用示波器测量开关电源输出各电路电压的平稳性,如:5V、12V、15V、24V等电压。U、V、W相间波形是否为正弦波。导体和绝缘体是否有腐蚀现象,如果有的话要及时用酒精擦拭干净。测量驱动器电路各路波形的方法是否有畸变。接触器的触点是否有打火痕迹,严重的要更换同型号或大于原容量的新品。确认保护显示回路无异常;确认控制电压的正确性,进行顺序保护动作试验;确认变频器在单独运行时输出电压的平衡度。

6.结束语

在电机拖动中选择适合的变频器,合理运用变频调速技术总结并且对容易出现问题的地方定期进行维修和保养工作,及时更换易损件可以保证变频器正常运行减少故障。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

初探起重机电机拖动系统的负载跟踪

在我国科学技术不断发展的今天,各种重型设备的应用性不断增强。起重机作为一种常见的、有效应用的设备,其可以有效的抬起重物,大大节省人力劳动。当然,要实现起重机长期稳定、安全、高效的应用,并不是非常容易的,需要对起重机电机拖动系统的负载跟踪予以合理的设计,有效的控制电机拖动系统,促使电机可以保持相对稳定的状态,为使起重机更好的运行创造条件。对此,本文就起重机电机拖动系统的负载跟踪进行分析和探讨。

引言:

起重机属于起重机械中的一种,其同时也是一种循环间歇运动的机械。对于起重机的应用,主要是将重物提起,将其平移到指定地点后降落物品,紧接着做反向运动,进行下一个重物的运输。起重机整个运作过程中,起重机电机拖动系统发挥巨大作用,其直接决定起重机能否将重物提起,并稳定的放在指定位置。当然,起重机电机拖动系统在具体运用的过程中容易受某些因素的影响,促使电机拖动系统运行不稳定,并且浪费电能。所以,加强起重机电机拖动系统的负载跟踪进行设计,有效的控制电机拖动系统,可以提升起重机电机拖动系统应用性。本文将从起重机电机拖动系统的力学方程分析展开,系统的探究起重机电机拖动系统的负载跟踪设计。

一、起重机电机拖动系统的动力学方程分析

对于起重机电机拖动系统的动力学方程的分析,需要结合起重机起升机构电机拖动系统图,依据相关的动力学原理,科学地、合理地分析,才能够详细地掌握整个起重机电机拖动系统的动力学方程,为后续准确的分析。设计起重机电机拖动系统的负载跟踪提供条件。对此,本文笔者参照某型号起重机起升机构电机拖动系统示意图(如图一所示),展开具体的分析。从图一可以知道分别为中间轴、卷筒、滑轮的传统效率。假设为起重机吊重物起升的速度、为起重机所吊重物的质量、为起重机吊具的质量、为起重机电机转子转动惯量、为制动轮和联轴器的转动惯量。根据动力学相关理论,可以得到关于起重机吊具上钢丝绳张力的公式,即:

在对起重机吊具上钢丝绳张力进行公式计算的过程中,因为是以动力学相关理论为基础,所以本文仅考虑吊具在提重物上升过程中所消耗的电能,对于其他因素所引起的能量消耗在此予以忽视。

二、起重机电机拖动系统的负载跟踪设计

综合上文起重机电机拖动系统的动力学方程式,对于起重机电机拖动系统的负载跟踪的设计主要是利用坐标轴分析的,这可以更为直接的分析电机拖动系统的负载跟踪,为实现起重机电机拖动系统可以稳定、有效应用创造条件。

对于起重机电机拖动系统的负载跟踪的设计,首先设计电机静止正交坐标系与旋转坐标系(如图三所示)。假设电机静止正交坐标系和以定子同步角速度,旋转得到两相旋转正交坐标系MOT,其中M轴与轴夹角为,且。那么,TM坐标系上电机转子磁链的矢量,将会与M轴某一点相交,从而可以实现整个系统的同步旋转。另外,由于在起重机电机拖动系统持续运作的过程中,电机转子磁链的矢量将会一直同M轴相交,这就意味着,转子磁链值与电子转子磁链矢量相等。

利用以上内容完成整个起重机电机拖动系统的负载跟踪设计。为了可以更加准确的、有效的、合理的、科学的完成起重机电机拖动系统的负载跟踪设计,笔者在此引入基于转差角频率的矢量变频控制系统原理图(如图四所示)。从转差角频率的矢量变频控制系统原理图可以了解电机转速计算中,需要运用到转速调节器对定子电流转矩分量予以计算,进而了解MT坐标系的同步旋转角速度。综合以上同步旋转角速度函数公式,以及起重机电机拖动系统实际情况,可以了解整个系统负载跟踪的应用需求。而积分器的因公可以测量出转角频率的矢量的变换角。利用矢量变换角可以得到电压励磁分量和转矩分量,相应的可以利用电压型逆变器对电压进行控制,从而实现起重机电机拖动系统的有效控制,促使电机稳定、安全、有效的运用。

结束语:

起重机电机拖动系统负载跟踪的设计是非常必要的,可以保证电机拖动系统相对稳定的运行,有效的节约电能。从起重机电机拖动系统负载跟踪控制的特点来看,电动机转子容易受到某些因素的影响。所以,在具体设计起重机电机拖动系统负载跟踪过程中,需要分析起重机电机拖动系统的动力学方程,了解转子电压、电流与磁链之间的关系。以此为依据构建电机静止正交坐标系与旋转坐标系,对电动机转子运作中负载转矩、定转速度等方面进行分析,从而科学、合理设计电机拖动系统负载跟踪,为保证起重机电机拖动系统稳定运作创造条件。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接