工业伺服节能改造,关于工厂上班的油车怎么做到节能降耗信息聚合页,专注于工厂上班的油车怎么做到节能降耗:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
节能改造关注问答
1、

电机容量的选择

1、连续工作制电动机容量的选择

1.带恒定负载时电动机容量的选择

对于负载功率恒定不变(如通分机、泵、重型机床、立车、齿轮铣床的主转动等)的生产机械、拖动这类机械的电动机在连续运行时的负载图及温升曲线如图7.2所示。这类工作机械选择电动机时,只需按设计手册中的计算公式算出负载负载所需功率,再选一台额定功率为的电动机即可。

因为连续工作制电动机(这类电动机有些铭牌上没有特别标明工作制)的启动转矩和最大转矩均大于额定转矩,故一般不必校验启动能力和过载能力。仅在重载启动时,才校验启动能力。

2.带变动负载时电动机容量的选择

在多生产机械中,电动机所带的负载大小是变动的,例如,小型车床、自动车床的主轴电动机一直在转动,但因加工工序多,每个工序的加工时间较短,加工结束后要退刀,更换工件后又进刀加工,加工时电动机带负载运行,而更换工件时电动机处于空载运行。其他如皮带运输机、轧钢机等也属于此类负载。有的负载是连续的,但其大小是变动的,如图7.3所示。在这种情况下,如果按生产机械的最大负载来选择电动机的容量,则电动机不能充分利用,如果按最小负载来选择,则容量又不够。为了解决该问题,一般采用所谓“等值法”来计算电动机的功率,即把实际的变化负载化成一等效的恒定负载,而两者的温升相同,这样就可根据得到的等效恒定负载来确定电动机的功率。负载的大小可用电流、转矩或功率来代表。

电动机的温升取决于它发出的热量,而电动机发出的热量是由损耗产生的,损耗有两部分,一是不随负载变化的不变损耗(包括铁损与机械损耗),一是与负载电流的平方成正比的可变损耗(铜损)。例如,图7.3所示的负载,对应于工作时间、……的负载电流为、……,则电动机在各种不同负载时的总损耗为


然后选择电动机的额定转矩,使即可。这就是等效转矩法,对生产机械来说,作出机械转矩负载图是不难的,因而等效转矩法应用广泛。

当电动机具有较硬的机械特性,转速在整个工作过程中变化很小时,则可近似地认为功率,于是式(7.3)可化成等效功率来计算,即


因用功率表示的负载图更易于作出,故等效功率法应用更广。

然后选择电动机的额定功率,使即可,这就是等效功率法。不管采用哪一种等效法选择电动机的容量,都只考虑了发热方面的问题。因此,在按“等值法”初选出电动机后,还必须校验其过载能力和启动转矩。如不满足要求,则应适当加大电动机容量或重选启动转矩较大的电动机。

2、短时工作制电动机容量的选择

有些生产机械工作时间较短,而停车时间却很长,例如,闸门开闭机、升降机、刀架的快移、立车与龙门刨床上的夹紧装置等,都属于短时工作制的机械。拖动这类机械的电动机之工作特点是:工作时温升达不到稳定值,而停车时足可完全冷却到周围环境温度,如图7.5所示。由于发热情况与长期连续工作方式的电动机不同,所以,电动机的选择也不一样,既可选用短时工作制的电动机,也可选择连续工作制的普通电动机。

1.选用短时工作制的电动机,规定的标准短时运行时间是10min、30min、60min、及90min四种。这类电动机铭牌上所标的额定功率是和一定的标准持续运行时间相对应的。例如为20KW时,只能连续运行30min,否则将超过允许的温升。所以,要按实际工作时间选择与上述标准持续时间相接近的电动机。如果实际工作时间与不同时,就应先将下的功率(生产机械短时工作的实际功率)换算成下的功率,这可根据等效功率法加以换算,即

然后选择短时工作制电动机,使其,再进行过载能力与启动能力的校验。

2.选用连续工作制的普通电动机

普通电动机的额定功率是按长期运行而设计的,再连续工作时,它的温升可以达到稳定值(即电动机的容许温升,位能充分利用。为了充分利用电动机在发热上的潜在能力,在短时工作状态下,可以使它过载运行,而其过载倍数与有关(如图所示)故选




--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

管道切割机中电机启动方式的介绍

管道切割机的控制系统中,人机界面选用MCGS嵌入式触摸屏作为组态控制画面显示器。制作组态时将每个组件设置内部属性与PLC信息采集通道建立联系。可实现的功能主要有:

1)动态显示托辊电机的转速,切割焊枪的位移。

2)通过手动触摸界面按钮控制托辊电机的转速,设置管道切割的长度,切割气体电磁阀的启闭状态。

3)PLC非正常工作时,报警灯将发出报警指示。

4)切管时间的设置。

切管机开始工作时,选择手动控制方式启动托辊电机,打开焊枪出气阀,按下点火控制按钮,此时PLC的内置定时器开始计时。切割完成后按下关阀控制按钮,同时PLC停止计时。添加好多段切管长度后,选择自动按键,进入自动加工过程。每次焊枪定位后,电磁阀自动开启,之后开始点火。切割时间由第一次手动操作界面时,PLC的计时长度决定。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


3、

电动机轴电流的分析

轴电流的危害

在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及更换带来的直接和间接经济损失也不可小计。

轴电压和轴电流的产生

轴电压是电动机两轴承端或电机转轴与轴承间所产生的电压,其产生原因一般有以下几种:

(1)磁不平衡产生轴电压

电动机由于扇形冲片、硅钢片等叠装因素,再加上铁芯槽、通风孔等的存在,造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴的两端感应出轴电压。

(2)逆变供电产生轴电压

电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。

(3)静电感应产生轴电压

在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的两端感应出轴电压。

(4)外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保

护、测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。

(5)其他原因

如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。

轴电流对轴承的破坏

正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过,由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状是轴承内表面被压出条状电弧伤痕。

轴电流的防范

针对轴电流形成的根本原因,一般在现场采用如下防范措施:

(1)在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与转轴可靠接触,保证转轴电位为零电位,以此消除轴电流。

(2)为防止磁不平衡等原因产生轴电流,往往在非轴伸端的轴承座和轴承支架处加绝缘隔板,以切断轴电流的回路。

(3)为了避免其他电动机附件导线绝缘破损造成的轴电流,往往要求检修运行人员细致检查并加强导线或垫片绝缘,以消除不必要的轴电流隐患。

一般通过以上处理,大多电动机的轴电流微乎其微,已对电动机构不成实质上危害。现场实践证明,经上述方式处理后实际使用寿命可由原几十个小时提高到上万小时,效果比较明显,尤其对高压电动机轴电流的防范效果好,对安全生产具有积极作用。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


4、

工业电机控制系统

电机消耗的能量几乎占全球电力的50%。随着能源成本的持续上涨,业内开始采用微处理器调速驱动器替代效率低下的固定速率电机和驱动器,这种新型电机控制技术与传统驱动器相比,能够使能耗平均降低30%以上。虽然调速电机提高了系统本身的成本,但是,考虑到电机能够节省的能量以及所增加的功能,只需短短几年即可挽回最初的投资成本。


通用电机设计

直流电机、无刷直流和交流感应电机是当今工业应用设计中最常见的电机。尽管每种类型的电机都有独特的性能,但基本工作原理类似。当一个导体通电时,例如线圈绕组,如果导体处于一个与其垂直的外部磁场内,导体将会受到一个与自身和外部磁场垂直的力。

直流电机:低成本和高精度驱动性能

直流电机是最先投入使用的电机类型,目前仍然以低开发成本和卓越的驱动性能得到普遍应用。在最简单的直流电机中,定子(即电机固定部件)为永久磁铁,转子(即电机的转动部件)上缠绕了电枢绕组,电枢绕组连接到机械换向开关,该开关控制绕组电流的导通和关闭。磁铁建立的磁通量与电枢电流相互作用,产生电磁扭矩,从而使电机做功。电机速度通过调整电枢绕组的直流电压进行控制。

根据具体应用的不同,可以采用全桥、半桥或一个简单的降压转换器驱动电枢绕组。这些转换器的开关通过脉宽调制(PWM)获得相应的电压。Maxim的高边或桥式驱动器IC,例如:MAX15024/MAX15025,可以用来驱动全桥或半桥电路的FET。

直流电机还广泛用于对速度、精度要求很高的伺服系统。为了满足速度和精度的要求,基于微处理器的闭环控制和转子位置非常关键。Maxim的MAX9641霍尔传感器能够用于提供转子的位置信息。

交流感应电机以简单、坚固耐用而著称,被广泛用于工业领域。最简单的交流电机就是一个变压器,原级电压连接到交流电压源,次级短路承载感应电流。“感应”电机的名称源于“感应次级电流”。定子载有一个三相绕组,转子设计简单,通常被称为“鼠笼”,其中,两端的铜或铝棒通过铸铝环短路。由于没有转子绕组和碳刷,这种电机的设计非常可靠。

工作在60Hz电压时,感应电机恒速运转。然而,当采用电源电路和基于微处理器的系统时,可以控制电机速度变化。变速驱动器由逆变器、信号调理器和基于微处理器的控制器组成。逆变器采用三个半桥,顶部和底部切换以互补方式控制。Maxim提供多种半桥驱动器,如MAX15024/MAX15025,可独立控制顶部和底部FET。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

初探起重机电机拖动系统的负载跟踪

在我国科学技术不断发展的今天,各种重型设备的应用性不断增强。起重机作为一种常见的、有效应用的设备,其可以有效的抬起重物,大大节省人力劳动。当然,要实现起重机长期稳定、安全、高效的应用,并不是非常容易的,需要对起重机电机拖动系统的负载跟踪予以合理的设计,有效的控制电机拖动系统,促使电机可以保持相对稳定的状态,为使起重机更好的运行创造条件。对此,本文就起重机电机拖动系统的负载跟踪进行分析和探讨。

引言:

起重机属于起重机械中的一种,其同时也是一种循环间歇运动的机械。对于起重机的应用,主要是将重物提起,将其平移到指定地点后降落物品,紧接着做反向运动,进行下一个重物的运输。起重机整个运作过程中,起重机电机拖动系统发挥巨大作用,其直接决定起重机能否将重物提起,并稳定的放在指定位置。当然,起重机电机拖动系统在具体运用的过程中容易受某些因素的影响,促使电机拖动系统运行不稳定,并且浪费电能。所以,加强起重机电机拖动系统的负载跟踪进行设计,有效的控制电机拖动系统,可以提升起重机电机拖动系统应用性。本文将从起重机电机拖动系统的力学方程分析展开,系统的探究起重机电机拖动系统的负载跟踪设计。

一、起重机电机拖动系统的动力学方程分析

对于起重机电机拖动系统的动力学方程的分析,需要结合起重机起升机构电机拖动系统图,依据相关的动力学原理,科学地、合理地分析,才能够详细地掌握整个起重机电机拖动系统的动力学方程,为后续准确的分析。设计起重机电机拖动系统的负载跟踪提供条件。对此,本文笔者参照某型号起重机起升机构电机拖动系统示意图(如图一所示),展开具体的分析。从图一可以知道分别为中间轴、卷筒、滑轮的传统效率。假设为起重机吊重物起升的速度、为起重机所吊重物的质量、为起重机吊具的质量、为起重机电机转子转动惯量、为制动轮和联轴器的转动惯量。根据动力学相关理论,可以得到关于起重机吊具上钢丝绳张力的公式,即:

在对起重机吊具上钢丝绳张力进行公式计算的过程中,因为是以动力学相关理论为基础,所以本文仅考虑吊具在提重物上升过程中所消耗的电能,对于其他因素所引起的能量消耗在此予以忽视。

二、起重机电机拖动系统的负载跟踪设计

综合上文起重机电机拖动系统的动力学方程式,对于起重机电机拖动系统的负载跟踪的设计主要是利用坐标轴分析的,这可以更为直接的分析电机拖动系统的负载跟踪,为实现起重机电机拖动系统可以稳定、有效应用创造条件。

对于起重机电机拖动系统的负载跟踪的设计,首先设计电机静止正交坐标系与旋转坐标系(如图三所示)。假设电机静止正交坐标系和以定子同步角速度,旋转得到两相旋转正交坐标系MOT,其中M轴与轴夹角为,且。那么,TM坐标系上电机转子磁链的矢量,将会与M轴某一点相交,从而可以实现整个系统的同步旋转。另外,由于在起重机电机拖动系统持续运作的过程中,电机转子磁链的矢量将会一直同M轴相交,这就意味着,转子磁链值与电子转子磁链矢量相等。

利用以上内容完成整个起重机电机拖动系统的负载跟踪设计。为了可以更加准确的、有效的、合理的、科学的完成起重机电机拖动系统的负载跟踪设计,笔者在此引入基于转差角频率的矢量变频控制系统原理图(如图四所示)。从转差角频率的矢量变频控制系统原理图可以了解电机转速计算中,需要运用到转速调节器对定子电流转矩分量予以计算,进而了解MT坐标系的同步旋转角速度。综合以上同步旋转角速度函数公式,以及起重机电机拖动系统实际情况,可以了解整个系统负载跟踪的应用需求。而积分器的因公可以测量出转角频率的矢量的变换角。利用矢量变换角可以得到电压励磁分量和转矩分量,相应的可以利用电压型逆变器对电压进行控制,从而实现起重机电机拖动系统的有效控制,促使电机稳定、安全、有效的运用。

结束语:

起重机电机拖动系统负载跟踪的设计是非常必要的,可以保证电机拖动系统相对稳定的运行,有效的节约电能。从起重机电机拖动系统负载跟踪控制的特点来看,电动机转子容易受到某些因素的影响。所以,在具体设计起重机电机拖动系统负载跟踪过程中,需要分析起重机电机拖动系统的动力学方程,了解转子电压、电流与磁链之间的关系。以此为依据构建电机静止正交坐标系与旋转坐标系,对电动机转子运作中负载转矩、定转速度等方面进行分析,从而科学、合理设计电机拖动系统负载跟踪,为保证起重机电机拖动系统稳定运作创造条件。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

电力拖动控制线路的布线方法

下面以接触器联锁正反转控制线路的安装为例介绍其布线方法。

主电路的布线方法:顺序法,即根据线号从小到大依次安装。安装顺序为:L1、L2、L3―U11、V11、W11―U12、V12、W12―U13、V13、W13―U、V、W。

控制电路的布线方法可归纳为三种。

第一种:线号法。按照控制电路的线号0,1,2…从小到大或从大到小依次进行安装。图1中,安装顺序为:0号线(2根)―1号线(1根)―2号线(2根:盘上1根,盘内与盘外按钮连接1根)―3号线(5根:按钮内部连线2根,盘上2根,盘内与盘外按钮连接1根)―4号线(3根:盘上2根,盘内与盘外按钮连接1根)―5号线(1根)―6号线(3根:盘上2根,盘内与盘外按钮连接1根)―7号线(1根),共18根。

所需连接导线根数的计算方法:

导线根数=接触点数-1+x

式中,接触点数指某一线号导线与元器件连接的数量;-1指一根导线有两端(中间不允许有接头),计算根数时需减1。+x指根据安装位置的不同:有盘外线与盘内线连接时,+1;无盘外线与盘内线连接时,+0。

根据此公式可计算出控制电路各线号所需导线根数。0号线2根(3-1+0=2),1号线1根(2-1+0=1),2号线2根(2-1+1=2),3号线5根(5-1+1=5),4号线3根(3-1+1=3),5号线1根(2-1+0=1),6号线3根(3-1+1=3),7号线1根(2-1+0=1),共18根。

第二种:单元电路法,又称回路法。布线顺序为:1―2―3―4―5―0支路8根(FU2至KH1根,KH至接线端子1根,接线端子至SB1进线1根,SB1出线至SB2进线1根,SB2出线至接线端子1根,接线端子至KM2联锁触头进线1根,KM2联锁触头出线至KM1线圈进线1根,KM1线圈出线至FU2熔断器1根);3―4支路3根(SB1出线至接线端子1根,接线端子至KM1自锁进线1根,KM1自锁出线至KM2联锁触头进线1根);3―6―7―0支路5根(SB2进线至SB3进线1根,SB3出线至接线端子1根,接线端子至KM1联锁触头进线1根,KM1联锁触头出线至KM2线圈进线1根,KM2线圈出线至KM1线圈出线1根);3―6支路2根(KM2自锁进线至KM1自锁进线1根,KM2自锁出线至KM1联锁触头进线1根)共18根。

第三种方法是综合法。具有上述两种方法的优点,线号法、回路法并用,遇到盘外的导线先不接,待盘上布线完成后再与盘外相连。此法实用性较强,但学生易出现故障,必须经过大量的实践学习才能掌握,适应于熟练工。安装顺序为:先接盘内线:0号线2根(KM1线圈出线至FU2熔断器1根,KM2线圈出线至KM1线圈出线1根);1号线1根(FU2至KH);2号线1根(KH至接线端子),3号线2根(KM2自锁进线至KM1自锁进线1根,KM1自锁进线至接线端子1根);4号线2根(KM1自锁出线至KM2联锁触头进线1根,KM2联锁触头进线至接线端子1根);5号线1根(KM2联锁触头出线至KM1线圈进线);6号线2根(KM2自锁出线至KM1联锁触头进线1根,KM1联锁触头进线至接线端子1根);7号线1根(KM1联锁触头出线至KM2线圈进线),再接盘外按钮内部连线2根(SB1出线至SB2进线1根,SB2进线至SB3进线1根);最后接盘内与盘外按钮的连接线4根(SB1进线接接线端子2号线、SB1出线接接线端子3号线、SB2出线接接线端子4号线、SB3出线接接线端子6号线)。共18根。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

同步电动机的电力拖动原理

由于同步电动机在稳定运行时,其转速等于同步转速,虽然同步电动机的机械特性较为简单,但由于同步电动机仅在同步转速下才能产生恒定的同步电磁转矩,不能采取直接起动的方法,而必须采取专门的方法来起动。

1、同步电动机的起动

同步电动机在正常运行时,转子恒以同步转速旋转,使旋转的转子磁场与定子因电磁作用而产生的旋转磁场保持相对静止,使得同步电动机产生稳定的电磁转矩,故同步电动机能够带动负载稳定地并恒以同步速度运行。但是要利用这两个定、转子磁场之间的作用使电动机在50Hz的交流电源下从静止状态起动起来却是非常困难的。

如果三相定子绕组接人三相对称电源时,所建立的定子磁场N极正好擦过巳励磁的转子磁极的S极面,由于异性磁极的吸引作用,定子磁场力图将静止的转子吸着与它一同旋转。但由于转子有着相当大的机械惯性,当转子尚未来得及向前转动时,定子磁场的N极已转到了转子D极的后面。它又力图将转子拉向倒退。在转子仍未反应过来时,定子磁场的"极又转到了转子S极的前方,苒度要将转子向前拉……如此反复,致使转子只能在原处摆动而旋转不起来。因此不能在额定电源下直接起动是同步电动机的主要缺点之一。为了使同步电动机得以起动,目前可采用的方法主要有三种。

1.1辅助电动机起动

选用一台和同步电动机极数相同的异步电动机作为辅助电动机来牵引同步电动机。起动时在同步电动机转子尚未加入励磁的情况下,先用辅助电动机将转子牵引到接近同步转速,然后采用自整步法,在同步电动机转子励磁绕组中通入直流励磁电流,再利用整步转矩将同步电动机接入电网,这时在定、转子磁场的共同作用下将转子拉入同步运行。此时辅助电动机巳失去作用,为减小不必要的损耗,可切断辅助电动机电源使它与主机脱离并停止运行。该方法只适用于空载起动或同步调相机的起动,其所需设备多、操作复杂。

1.2异步起动

现代大多数同步电动机,在其转子上都装有类似异步电动机的笼型绕组(称为起动绕组或阻尼绕组)。在定子接通电源后,起动绕组中便能产生异步电磁转矩起动电动机,等转速接近同步转速时,再通入励磁电流,利用同步电磁转矩将电动机牵入同步转速。这种起动方法是目前同步电动机最常用的起动方法。

异步起动时,励磁绕组不能开路,否则由于励磁绕组匝数很多,定子旋转磁场将在励磁绕组内感应很高的电压,可能会击穿励磁绕组的匝间绝缘,甚至造成人身事故。异步起动时,励磁绕组也不能直接短路。如果直接短路,励磁绕组中将感生一个很大单相电流,此单相电流与旋转气隙磁场相互作用,将产生一个较大附加转矩(单轴转矩〉。因为异步起动时实际的起动转矩是起动绕组产生的异步转矩和单轴转矩之和(两者合成〉。通常选用一个阻值为励磁绕组本身阻值10倍左右的起动电阻与转子励磁绕组串接,以减小励磁绕组中的感应电流,削弱单轴转矩对起动的影响。

2、同步电动机的变频调速

同步电动机是以其转速"与供电电源频率力之间保持严格同步关系而命名的,即只要电源频率保持不变,同步电动机的转速就恒定不变而与负载大小无关。因此要改变同步电动机的转速,只有通过改变其供电电源的频率来达到,即采用变频调速的方法。

2.1他控式同步电动机变频调速系统

他控式同步电动机变频调速系统中的变频装置可以采用交-直-交变频器,也可采用交-交变频器。该系统结构简单,控制方便,只需一台变频器供电,成本低廉。可作为变频起动装置,实现同步电动机的软起动;也可用于多台同步电动机的群调速系统。但由于没有转速反馈,他控式变频调速方法虽然可以实现同步电动机的转速调节,但就像同步电动机接在工频电网上一样,存在转子振荡和失步的隐患,这是他控式同步电动机

2.2自控式同步电动机变频调速系统

与他控式同步电动机变频调速相比,自控式同步电动机变频调速的最大特点就是从根本上消除了同步电动机转子振荡和失步的隐患。因为自控式同步电动机变频调速系统在电动机轴端装有一台转子位置检测器,由它发出的信号控制给定子供电的变频装置电力电子器件的导通顺序和频率,使定子旋转磁场的转速和转子旋转的转速相等,始终保持同步,因此不会因负载冲击等造成失步现象。这种调速方式适用于快速可逆运行和负载变化剧烈的场合。

自控式同步电动机变频调速系统中的变频装置,可采用交-直-交型,也可采用交-交型。自控式同步电动机变频调速系统中的同步电动机,从电机结构上看,它是交流的,但从其工作原理上看,就像是一台直流电动机。它采用电力电子逆变器和转子位置检测器,代替了容易产生火花的旋转接触式换向器,即用电子换向取代机械换向。因此自控式同步电动机变频调速系统又称为无换向器电动机的调速系统。自控式变频同步电动机也称为无换向器电动机。根据调速系统所采用的变频装置不同,无换向器电动机可分为交流和直流两类。采用交-直-交变频装置时,其逆变器由直流电源供电,故称为直流无换向器电动机;采用交-交变频装置时,其逆变器由交流电源供电,故称为交流无换向器电动机。

3、同步电动机的功率因数补偿应用

随着电力系统日益扩大,运行在系统上的主要负载是异步电动机与变压器。因此,电网就要担负很大一部分电感性的无功功率,导致整个电网的功率因数降低,使得线路损耗和压降增大,输电质量变坏,电力系统运行也很不经济。为此,就提出了提高电网功率因数的要求。而同步电动机在额定电压和额定频率下,在输出功率不变的条件下,改变励磁电流的大小,就可以改变流入同步电动机定子电流的性质。即正常励磁时,同步电动机的定子电流与定子电压同相位,相当于纯电阻性负载;当励磁电流比正常励磁电流大时(处于过励状态),同步电动机定子电流在相位上超前定子电压,相当于电阻电容性负载;当励磁电流小于正常励磁电流时(处于欠励状态),同步电动机定子电流在相位上滞后定子电压,相当于电阻电感性负载。因此,同步电动机接人电网,通过调节其励磁电流,能够起到改善电网总功率因数的作用。一些大生产企业为了提高电网的功率因数,常使用同步电动机来补偿电网的功率因数。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

探析电力拖动控制线路在安装中的运用

电力拖动是线路控制的主要方式,而在具有的实施中,要遵循一定的布线原则。随着科技的进步,电力拖动线路的应用领域不断扩展,对人们的生产和生活带来积极的效益。为了了解电力拖动控制在线路安装中运用,文章分析了其布线原则,阐述了其在电力系统安装中的过程,并且针对其存在的问题提出了电力拖动控制线路安装的创新。

电力拖动是线路控制的主要方式,基于此的线路拖动需在必要的原则下进行。为了促进电力拖动控制线路在安装中积极作用的发挥,文章举例说明了其应用过程和发展前景。

一、电力拖动控制系统介绍

(一)继电接触式断续控制

继电接触式断续控制操作方法简单,在电力拖动控制线路中得到广泛的应用。其以三相异步电力拖动系统作为主要系统,对于继电接触式断续控制系统的了解主要包括以下几个方面:了解线路图纸,进行线路安装规划。对于无法直观理解的元件,需要相关工作人员根据经验对其进行处理和分析。

(二)可编程无触点断续控制

可编程无触点断续控制应用也较为广泛,但其运行较为复杂,费用较高。其主主要原理为计算机的编程控制。但其能够有效的控制系统死接线的问题,对于线路控制智能化的实现具有推进作用。

二、电力拖动系统及其控制线路布线原则

设备性能的优化促进了社会劳动生产率的提高。随着科技的进步,我国的电力拖动技术广泛应用于农业、工业等领域。电力拖动控制系统是目前较为先进且应用广泛的系统,能够满足人们对电力的需求。在电力拖动控制线路的安装中,其布线要遵循一定的原则。首先是敷线操作,在安装前认真检查安全器件,确保其性能良好。在敷线过程中,要注意以下问题:防止两个端子之间出现接头,一旦出现则采取加装接线盒的方式,确保系统的稳定运行。同时,接线盒的安装有助于线路的维修和保养。并且,在安装接线盒时要预留适当长度的导线,为线路的安装和控制打好基础。然后进行线路的接线,接线过程要求线路连接完好。尽量使用单独的导线连接同一个元件,这样可以保证线路的稳定性。要求将其与器件的横截面积相对应,按照上小下大原则进行器件的排列。根据具体的施工状况和线路用途进行调整。另外,在导线长度的选择上,不宜过长或者过短,要满足线路额定电流的要求,同时避免浪费,将主、控电路进行正确的甄别和分类,避免线路重叠,在安装前要认真检查线路的外皮,确保其绝缘性良好,以免造成安全事故。

三、电力拖动控制线路在安装中的运用

(一)电力拖动控制线路的安装

目前,在很多生产设备中存在电力拖动线路,电力拖动线路在生产和生活中具有积极的作用。以电梯设计为例,它是应用位置控制与减速控而使电梯能够到位自停或迅速减速。在现代电梯设计中,线路的设计要保证其停在准确的位置。随着科技的进步,电力拖动控制线路应用于机械行业、建筑行业以及矿产业等行业。目前,其技术正在进一步发展,其积极作用逐渐体现出来。

(二)电力拖动控制线路安装过程中的问题

由于电力拖动控制线路安装较为复杂,且受限于现代电力拖动技术,常使得企业安装人员在安装过程中出现安装错误。如安装线路与图纸不符而到设备无法通电正常运行。一些员工无法正确的区分元器件的两个接线柱等问题,这一系列的问题都要求电力拖动安装过程要注重员工技术的培养,加强其对线路拖动的了解。另外,在电力拖动控制线路安装过程中,线路质量容易被忽略。很多企业直接进行安装而忽略了对线路绝缘性能的检验。

(三)电力拖动控制线路在实践中的创新问题

在探讨电力拖动线路安装过程中还存在缺乏创新的问题。基于电力拖动控制线路安装的复杂性,企业应对线路安装进行检查,对出现问题的线路及时进行改进。另外,还应不断地实现电力拖动线路的创新,改善传统的线路拖动中存在的问题。由于传统的线路拖动易出现粘连问题,造成线路绝缘性能下降,因此要实现其创新。其主要原因在于先给控制电源的电闸通电,导致线路在拖动过程中产生较大的电弧。因此我们对其采取创新措施。增设线路中的控制点,同时确保控制点之间不造成相互影响,设置多个信号灯来提示不同的线路损毁问题和安全隐患,确保启动点运行一致。电力拖动近年来取得了良好的效果,但在技术上和具体实施中都存在一定的问题需要解决。其中包括资源浪费问题,维修问题和线路的绝缘性能以及安装顺序问题等。总之,针对电力拖动控制线路在实践中存在的诸多问题,我们应对其进行必要的创新,从而使其在线路控制上起到积极作用。

四、总结

电力拖动技术对电力线路的安装具有积极的作用,但其实施过程较为复杂。电力拖动可以应用于建筑、机械、电力等多个领域,其技术随着企业改革而不断改进。当然,目前电力拖动技术还存在一定的问题,包括企业员工对电力拖动不了解等。基于此,电力拖动控制线路在安装中应进行不断改进和更新。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

三要素基础上的电力拖动系统过渡建模问题研究

电力拖动系统实际工作环节中会出现一定的稳态过程或暂态过程,整个形式下的状态活动调整被视为过渡过程,是整个动态活动管路监察的主要衡量标准。涉及到电力拖动系统的惯性特征主要借助一定的机械惯性模式以及生产、传动、电动机的系统控制模式进行着一定程度的旋转,整个动力学原理的渗透前提下,面对内部拖动系统中的飞轮转矩以及转动惯量的数值变化,需要结合实际电动机的绕组以及电气控制中的电感量等进行深入的研究,同时对于后续的热力惯性的反映效果以及参数变化也需要进行系统的观察和研究,以满足整个活动程序下的标准数据建模水准。

1电力拖动系统的三种惯性

在电力拖动系统的实际工作中,总会出现加速或是减速运动的过程,而两种运动状态的转变过程中,会出现三种形式的惯性,包括机械惯性、电磁惯性和热力惯性等。但是,在实际的研究中发现,真正对电力拖动系统由重大影响作用的是机械惯性,而电磁惯性和热力惯性可以忽略不计。

1.1机械惯性

机械惯性对于电力拖动系统来说,其存在的最主要问题是在运动状态转变的过程中,不能够实现电力拖动系统转速的突变,使运动状态出现延迟。机械惯性主要存在于生产机械设备的工作运行中、传动装置的工作运行中、电动机的工作运行中以及旋转设备等工作运行中。机械惯性在电力拖动系统中,主要是通过飞轮转矩或是转动惯量的数量大小来进行反映的。

1.2磁力惯性

电磁惯性对于电力拖动系统来说,因为该惯性对系统的影响很小,通常可以忽略不计。其主要原因是,在电力拖动系统中,电磁惯性主要是通过电动机绕组在工作运行中和电控装置等在工作运行中,自感和互感所产生的惯性。这种惯性与机械惯性相比,对系统的影响很小,所以在分析和计算中往往可以忽略这种惯性对系统所产生的影响。

1.3热力惯性

热力惯性对于电力拖动系统来说,其惯性对系统的影响也很小,通常也可忽略不计。其主要原因是,在电力拖动系统中,电磁惯性主要是通过电机在工作运行中和控制装置等在工作运行中,由于温度的变化致使设备的一些参数发生变化,从而产生热力惯性。在设备运行中所产生的热力惯性是很大的,但是在工作运行状态下,设备运行的动态过程很快,所以热力惯性对于系统的影响很小,所以在分析和计算中往往可以忽略这种惯性对系统所产生的影响。因此,在研究和分析电力拖动系统的惯性时,一般只考虑机械惯性对系统所产生的影响。

2阶段性电路暂态作用下的“三要素”法原理

在线性电路内部的专有储能元件或是可看做是储能元件,无论是简单还是复杂,都需要进行一阶常系数性微分方程的处理,这种电路系统结构被称为一阶线性电路。在一阶性电路中,电路的响应一般包括两个部分,暂态和稳态两个分量。可写成一般式:

在这个一般式中,是稳态分量,而是暂态分量;是电流、电压或转矩等。如果该一般式的初始值是的话,则可以得到A=-。代入到一般式中:

这个一般式是一阶线性电路在暂态状态下的一般公式,可对应任意变量。在一般式中,只要求出式中的是的初始值、是的稳态值和是过渡时间常数,这三个要素,就可以得到电路响应的电流值、电压值和转矩值等。

结合实际电路的响应主要是根据暂态分量以及稳态分量的分布状态进行分析,进行一阶线性电路暂态过程中的任意变量统计过程中,根据实际内部的电流、电压以及转矩三个要素具体值进行电路响应的回馈,结合初始值和稳态值的分布规律进行过渡过程时间常数的应用。

3直流拖动系统过渡过程的数学模型建立

本文在研究直流电力拖动系统的过渡过程中,将以他励直流额电动机为例来进行分析。

3.1电磁转矩的动态方程式

该式中,T2是稳态转矩;Tεm是电磁转矩。

经过直流电动机拖动系统作用模式的深入研究,实现内部数据在整个动态方程式的应用分析。在进行电磁转矩计算中,主要利用三个要素进行动态方程的建立:

该式中,TQ是初始转矩;是时间常数。

3.2电流的动态方程式

该式中,Iz是稳态电流;Ia是电枢电流。

经过直流电动机拖动系统作用模式的深入研究,实现内部数据在整个动态方程式的应用分析。在进行电流计算中,主要利用三个要素进行动态方程的建立:

该式中,IQ是初始电流。

3.3转速的动态方程式

经过直流电动机拖动系统作用模式的深入研究,实现内部数据在整个动态方程式的应用分析。在进行电动机转速的计算中,主要利用三个要素进行动态方程的建立:

该式中,n是稳态转速;nz是电动机的转速;nQ是初始转速。

利用整个要素的恒定效应计算,可以引进电枢电流以及实际转速的动态方程计算方式,对于不同数据的动态方程式的表达对于整个一阶线性电路的过渡过程的数学模型建立有着一定的指导作用,实现后期的直流电动机电枢回路串电阻过渡过程内部流程曲线图的标准制定,保证相关数据的提供标准形式。

4交流拖动系统过渡过程中的相关数学模型的建立与分析

本文在研究交流拖动系统过渡过程中,将以绕线式异步电动机转子回路串电阻作为示例进行研究。通过一定程度的绕线式异步电动机内部的实际转子回路电阻值的观察与研究,结合绕线的分折异步处理进行过渡过程的分解,实际机械化特性模式作用下的主要直线操作手法结合实际机械特性的曲线进行直流电动机相似流程的处理与作业流程,实现后续涉及具体机械特性方程的实用公式:该式中,是临界转矩;是临界转差率。

将该方程式进行简化,可得到:

电力拖动系统的运动方程式已知:

对此,同样可以运用“三要素”法来求出交流电力拖动系统的数学模型:

根据:

可以得到:

利用电流内部设备结构的临界转矩以及临界转差率的提供进行具体的简化,以保证整个活动过程的系统建模数据的标准参考价值,节省一定的时间和计量工作分配程序,使得具体检验的落实工作在相对严格的标准下充分进行。

5总结

综上所述,本文通过一阶线性电路的“三要素”法对电力拖动系统过渡过程进行了建模实践。这个“三要素”法不仅适用于电力拖动系统过渡过程的应用,还同样可适用于其他的电力设备的工作运行中,譬如像电动机的启动、制动和调速等机械动态转变的过渡过程情况中。“三要素”法所建立起来的数学模型,具有简单、快捷和清晰等优点,非常适用于工程计算。在他励直流、并励直流的电动机的工作和运行中,可以知道电磁的转矩与电枢的电流是呈现正比的关系,其过渡过程的电枢电流的表达式是符合“三要素”法所建立的数学模型的。但是,在串励直流和复励直流的电动机的工作和运行中,电磁的转矩和电枢的电流并不是正比的关系,其过渡过程的电枢电流表达式不符合“三要素”法所建立的数学模型,所以不能够用“三要素”法来建立数学模型。在交流电动机的工作和运行中,当转子功率因素不变时,其电磁的转矩与转子的电流之间是呈现正比的关系,其过渡过程的转子电流的表达式是符合“三要素”法所建立的数学模型的。所以,可以采用“三要素”法来进行数学模型的建立。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接