工业伺服节能改造,关于工厂节能降耗相关培训信息聚合页,专注于工厂节能降耗相关培训:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能

工厂节能降耗措施有哪些?

工厂节能降耗措施有哪些?徕卡节能电气,专业从事工业节能15年,在工业节能方面,主要对生产车间内大型液压油压设备做伺服系统节能改造。工厂的节能降耗项目,节能改造

2082018-08-03 13:06:08

查看详情

关于公示苏州工业园区2017年度重点用能企业节能降耗低碳目标责任考核结果的通知

  关于公示苏州工业园区2017年度重点用能企业节能降耗低碳目标责任考核结果的通知  根据《苏州工业园区重点用能单位节能降耗低碳发展目标责任考核方案》(苏园经〔2016

802018-07-24 10:06:03

查看详情

工厂设备节能改造节电率能达到多少?

  工厂设备节能改造节电率能达到多少?  答:工厂节能设备的节电率有高有低,具体需要根据设备及设备的使用工况来决定的。以上阐述的设备节电率为一般情况的节电率。  注

642018-06-26 09:03:11

查看详情

空压机热能回收解决工厂热水供应能耗方案

  空压机热能回收解决工厂热水供应能耗方案  工厂内热水供应环境主要有:  1、电子行业:原水加热、纯水加热、空调加热、生活用水  2、纺织行业:生活用水、空调采暖、锅

632019-01-21 15:34:09

查看详情

企业节电方法有哪些?企业怎么实施工厂节电改造?

  企业节电方法有哪些?企业怎么实施工厂节电改造?   在企业内部,推行工业节能改造,在这之前,我们应该先了解公司哪些‘地方’或者‘设备’是在浪费着

512018-09-18 13:46:40

查看详情

节能改造项目适合哪些行业工厂企业?

  哪些工厂可以做节能改造?  答:制造工厂都可以做节能改造,主要根据工厂里面的实际耗能设备来决定的。常见通用的可以做节能有:空压机节能、水泵节能、照明节能、中央空调

372018-06-26 09:04:29

查看详情

工厂节能改造:变频与伺服有什么区别?

  伺服和变频的异同  伺服与变频的一个重要区别是:变频可以无编码器,伺服则必须有编码器,作电子换向和转速,位置反馈使用。  两者的共同点: 交流伺服的技术本身就是借鉴并

342018-07-20 13:49:13

查看详情

工厂设备经伺服节能改造后会不会影响设备正常运行?

伺服节能改造,主要改造三大件:  1、三相异步电机更换为同步伺服电机  2、原油泵更换为伺服油泵  3、伺服控制系统的增加  设备经过伺服节能改造,新的动力系统相

262018-07-27 15:56:00

查看详情

工厂节能改造施工项目周期需要多长时间?

  工厂节能项目施工周期需要多久?  答:节能项目的施工周期是由多方面决定的:节能项目的大小,项目改造难度,节能项目材料准备,节能项目实施阶段,节能项目验收准备等。  1.节

232018-06-26 09:01:58

查看详情
节能改造关注问答
1、

普通电机的防爆等级

电机防爆等级由3部分构成

1)在爆炸性气体区域(0区、1区、2区)不同电气设备使用安全级别的划分。如旋转电机选型分为隔爆型(代号d)、正压型(p)、增安型(e)、无火花型(n)

2)气体或蒸气爆炸性混合物等级的划分,分为ⅡA、ⅡB、ⅡC三种,这些等级的划分主要是依照最大试验安全间隙(MESG)或最小点燃电流(MICR)来区分的。

3)引燃某种介质的温度分组的划分。主要分为T1-450℃普通电机防护等级:

0无防护电机无专门防护不作试验,但应符合2.1条

1防护大于50MM固体的电机能防止大面积的人体偶然意外地触及或接近壳内带电或转动部件。能防止直径大于50MM的固体异物进入壳内

2防护大于12MM固体的电机能防止直径大于12MM的固体异物进入壳内

3防护大于2.5MM固体的电机能防止直径大于2.5MM的工具或导线触及或接近壳内带电或转动部件

4防护大于1MM固体的电机能防止直径或厚度大于1MM的导线或片条触及或接近壳内带电或转动部件

5防尘电机承受任何方向的溅水应无有害影响

0无防护电机无专门防护

1防滴电机垂直滴水应无有害影响

215度滴电机当电机从正常位置向任何方向倾斜至15度以内任一角度时,垂直滴水应无有害影响

3防淋水电机与垂直线成60度角范围内的淋水应无有害影响

4防溅水电机承受任何方向的溅水应无有害影响

5防喷水电机承受任何方向的喷水应无有害影响

6防海浪电机承受猛烈的海浪冲击或强烈喷水时,电机的进水量应不达到有害的程度。

7防浸水电机当电机浸入规定压力的水中经规定时间后,电机的进水量应不达到有害的程度

8潜水电机电机在制造厂规定的条件下能长期潜水。电机一般为水密型,便对某些类型电机也可允许水进入,但不应达到有害的程度。

从以下几个方面认识防爆电机与普通振动电机的区别:

(1)防爆电机一般应用在易燃易爆的场合;

(2)防爆电机接线盒的密封较普通振动电机要好;

(3)防爆电机防护等级最低为IP55,但也有IP44、IP54的,而普通振动电机有IP23、IP44、IP54、IP55、IP56不等,其适用于不含易燃、易爆、腐蚀气体和较为清洁的场所,并用于驱动各种无特殊要求的机械设备,如机床、泵、风机、压缩机、运输机械等,所以从外形就可以分辨出来。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

交流电机和直流电机调速方法

电机有两大类:交流电机、直流电机。交流电机中用得最多的是异步电机(感应电机),转别是鼠笼式异步电机。现德科斯TKS给大家介绍直流电机、交流电机调速方法。

1、直流电机调速方法:

直流电机是指将直流电送到直流电机,把直流电机的电能转换成机械能。这里首先要介绍如何将市电的交流电转换成需要的直流电。六十年代以前采用的是发电机--电机系统(F-D),这种方法只有在电机由专用的发电机供电时才有可能。另一种是可控硅--电机系统(SCR-D)。

直流电机的调速还比较方便,可以通过调节电枢供电电压,电枢中串联电阻,激磁回路串联电阻来实现。

可见直流电机调速有三种方法,而且调节电枢供电电压的方法容易实现平滑、无级、宽范围、低损耗的要求。直流电动机电磁转矩中的两个可控参量和是互相独立的,可以非常方便地分别调节,这种机理使直流电动机具有良好的转矩控制特性,从而有优良的转速调节性能。

尽管直流电机调速就其性能而言,可以相当满意,但因其结构夏杂,惯量大,维护麻烦,不适宜在恶劣环境中运行,不易实现大容量化、高压化、高速化,而且价格昂贵。

2、交流电机调速方法:

交流电机刚好相反。交流电机结构简单、惯量小、维护方便,可在恶劣环境中运行,容易实现大容量化、高压化、高速化,而且价格低廉。

从节能的角度看,交流电机的调速装置可以分为高效调速装置和低效调速装置两大类。高效调速装置的特点是:调速时基本保持额定转差,不增加转差损耗,或可以将转差动率回馈至电网。

低效调速装置的特点是:调速时改变转差,增加转差损耗。

高效调速方法包括:改变极对数调速—鼠笼式电机变频调速—鼠笼式电机串级调速—绕线式电机换向器电机调速—同步电机。

低效调速方法包括:定子调压调速—鼠笼式电机电磁滑差离合器调速—鼠笼式电机转子串电阻调速—绕线式电机。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

直流电机的调速方法

直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种:

(1)调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。

(2)改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。

(3)改变电枢回路电阻日。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。

改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动系统中采用。弱磁调速范围不大,往往是和调压调速配合使用,在额定转速以上作小范围的升速。因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速和弱磁调速两种方法配合起来使用。

直流电动机电枢绕组中的电流与定子主磁通相互作用,产生电磁力和电磁转矩,电枢因而转动。直流电动机电磁转矩中的两个可控参量和是互相独立的,可以非常方便地分别调节,这种机理使直流电动机具有良好的转矩控制特性,从而有优良的转速调节性能。调节主磁通一般还是通过调节励磁电压来实现,所以,不管是调压调速,还是调磁调速,都需要可调的直流电源。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


4、

水泥厂电动机节能分析

目前,水泥行业的竞争非常激烈,但关键还是制造成本的竞争,而电动机电耗占成本30%,因此做好电动机的降耗增效工作就显得极为重要。所以,我们要从调速方式、电动机的选型、启动装置等方面入手等每个环节开展细致的工作,同时要大力应用新技术新成果,促进企业的节能降耗。

一、变频调速节能

1、风机、水泵上的变频调速节能

大部分水泥厂的一些设备尤其是一些大功率设备在生产过程中绝大部分时间都是不满负荷,在生产过程中都是通过调节挡风板或阀门的开启角度的机械调节方法来满足不同的用风(水)量,这种操作方式的缺点是:(1)电机及风机或水泵的转速高,负荷强度重,电能浪费严重;(2)设备运行的自动化程度相当低,几乎完全靠人工调节,调节精度差,控制不精确;(3)电气控制采用直接或降压起动,启动时电流对电网冲击大,需要的电源(电网)容量大,功率因素较低。(4)起动时机械冲击大,设备使用寿命低;(5)噪声大,粉尘污染严重等。在水泥厂主要有生料磨排风机,窑尾废气处理风机,罗茨风机,水泥磨排风机,煤磨风机、蓖冷机风机、选粉机、循环水泵、给水泵等。由于变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n,H∝n2,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。如下图示为压力H-流量Q曲线特性图:

n1-代表电机在额定转速运行时的特性;

n2-代表电机降速运行在n2转速时的特性;

R1-代表风机、泵类管路阻力最小时的阻力特性;

R2-代表风机、泵类管路阻力增大到某一数组时的阻力特性。

风机、泵类在管路特性曲线R1工作时,工况点为A,其流量压力分别为Q1、H1,此时风机、泵类所需的功率正比于H1与Q1的乘积,即正比于AH1OQ1的面积。由于工艺要求需减小流量到Q2,实际上通过增加管网管阻,使风机、泵类的工作点移到R2上的B点,压力增大到H2,这时风机、泵类所需的功率正比于H2与Q2的乘积,即正比于BH2OQ2的面积。显然风机、泵类所需的功率增大了。这种调节方式控制虽然简单、但功率消耗大,不利于节能,是以高运行成本换取简单控制方式。若采用变频调速,风机转速由n1下降到n2,这时工作点由A点移到C点,流量仍是Q2,压力由H1降到H3,这时变频调速后风机所需的功率正比于H3与Q2的乘积,即正比于CH3OQ2的面积,由图可见功率的减少是明显的。

也就是当风机水泵的转速下降10%时,电机消耗功率下降27.1%.所以风机水泵采用变频调速节能效果非常明显。

2、用变频调速取代传统调速

传统调速所采用的晶闸管串级调速、直流调速、电磁滑差调速、液力耦合器调速和异步电动机的变级调速等存在传动效率低、难维护等缺点,而变频调速结构简单,稳定可靠,调速精度高,启动转矩大,调速范围广。所以采用变频调速在提高机械的传动效率就可节能20%左右。

3、变频在空气压缩机上应用

空压机恒压供气使用变频器与压力控制构成闭环控制系统,使压力波动减少1.5%,降低噪音、减少振动。保证设备长期稳定运行,从而减少了设备维护工作量,延长了设备使用寿命。用变频器后,空压机可在任何压力下随意起动,打破了以前不允许带压起动的规定,起动电流也较以前大大降低。通过使用变频器后的实例,多数压缩机节电率约在20%左右。

总之:采用变频器控制将有以下诸多优点:

(1)、采用变频器控制电机的转速,取消挡板调节,降低了设备的故障率,节电效果显着;

(2)、采用变频器控制电机,实现了电机的软启动,延长了设备的使用寿命,避免了对电网的冲击;

(3)、电机在低于额定转速的状态下运行,减少了噪声对环境的影响;

(4)、具有过载、过压、过流、欠压、电源缺相等自动保护功能;

(5)、提高产品质量及产量。

实践证明,变频改造具有显着的节电效果,是一种理想的调速控制方式。既提高了设备效率,又满足了生产工艺要求,并且还大大减少了设备维护、维修费用,另外当采用变频调速时,由于变频装置内的直流电抗器能很好的改善功率因数,也可以为电网节约容量。直接和间接经济效益十分明显。[page]

二、电动机的功率因数补偿

笼型电动机通常采用并联电容器就地补偿的方法。绕线式电动机可采用进相机补偿的方式。进相机补偿分旋转式和静止式2种,由于旋转式进相机结构上的缺陷,目前逐步被静止式进相机所代替。

合理选用电动机类型

Y系列电动机是全国统一设计的新系列产品,是国内目前较先进的三相异步电动机。20世纪80年代中期即在全国推广应用。其优点是效率高、节能、启动性能好。而目前国内许多老水泥企业仍大量采用JO2系列电动机,相比来说Y系列比JO2系列电动机效率提高了0.413%。因此用Y系列电动机取代旧式电动机势在必行。

选择电动机类型除了满足拖动功能外,还应考虑经济运行性能。对于年运行时间大于3000h,负载率大于50%的场合,应选择YX系列高效率的三相异步电动机。与Y系列相比,其效率平均高3%,损耗降低20%~30%,虽然价格高于Y系列电动机,但从长期运行考虑,经济性还是明显的。

同步电动机能提高企业电网的功率因数,降低供电线路损耗,但控制系统繁杂,价格较高。

合理选用电动机的额定容量

国家对三相异步电动机3个运行区域作了如下规定:负载率在70%~100%之问为经济运行区;负载率在40%~70%之间为一般运行区;负载率在40%以下为非经济运行区。若电动机容量选得过大,虽然能保证设备的正常运行,但不仅增加了投资,而且它的效率和功率因数也都很低,造成电力的浪费。因此考虑到既能满足水泥厂设备运行需要,又能使其尽可能地提高效率,水泥企业一般负载率保持在60%~l00%较为理想。对于负载率小于40%的三角形接法电动机可改为星型接法,以提高其效率。

同步电动机能提高企业电网的功率因数,降低供电线路损耗,但控制系统繁杂,价格较高。随着异步电动机制造水平的提高,新设备已很少采用。

三、电动机启动和运行形式

低压笼型大中型电动机

若采用全压直接启动方式,这要求电力系统有足够大的容量,而实际运行时,电力系统负载率很低,影响供电效率,并且用直接启动方式易烧毁开关、电动机,影响电网其他设备的运行,往往为了尽量减少电动机启动次数而宁愿让电动机空转而不停车,造成大量浪费。此类电动机可以用电动机软启动器启动。电动机软启动器是采用大功率晶闸管模块作为主回路的开关元件,通过控制它的导通角以实现软特性的电压爬升。它具有对电网无过大冲击,对机械传动系统(齿轮及轴连接器)震动小,启动转矩平滑稳定等诸多优点。启动电流在2.5~3.5倍额定电流之间可调,启动时间可调。

高压笼型电动机

传统的启动方式多选用电抗器、自耦变压器等,但这些启动设备都不能很好地满足启动要求,很难获得理想的启动参数。目前出品的热变电阻软启动装置能较好地满足启动要求。热变电阻器由具有负温度系数的电阻材料制成,电阻器串于电动机定子回路,当电动机启动、电阻体通过启动电流时,其温度升高,而阻值随之减小,从而使电动机端电压逐步升高,启动转矩逐步增加,以实现电动机的平稳启动。根据电动机参数和负载要求的启动转矩,能方便地配置适当的启动电阻值获得最佳的启动参数,即在较小的启动电流下,获得足够大的启动转矩。

大型绕线型电动机

以前大多采用频敏变阻器启动,但其故障率太高。目前较为成熟的方式是采用液体变阻启动器。它是利用两极问的液体电阻,通过机械传动装置使极板的距离逐步接近,直至接触,达到串人转子回路中的电阻无级变小最后为零,实现电动机无冲击的平滑启动。其特点是启动电流小,对电网无冲击,热容量大,可连续启动5~10次,维护方便,使用可靠。目前我厂该类型电动机已全部采用液体变阻启动器。

中、小型绕线电动机

以前主要采用频敏电阻器和油浸电阻器启动,由于有滑环、碳刷、短路环等零件与继电器、交流接触器、频敏或油浸变阻器等电器元件组成的启动系统都安装在粉尘较大的生产现场,因此它具有故障率高、维修量大的缺点,经常影响设备的正常运行,而无刷无环启动器较好地解决了上述问题,它是一种启动平滑,不改变运行特性且不受粉尘干扰的启动设备。其一次启动电流限制在3.0~4.0Ⅰe之间,适合于11~600kW的高低压绕线型电动机。该启动器是利用频敏变阻器的原理,利用铁磁性材料的频感特性研制而成,安装在电动机转轴原来装集电环的位置,与转子同步旋转,省去了电动机的辅助启动装置。

成球供水系统

生料成球工序是影响水泥熟料烧结质量的关键工序之一,其中水、料比例直接影响成球好坏。应用变频器后能通过跟踪生料供给量对成球预加水泵的转速进行无级调速,从而实现全自动化的闭环控制,料水配合稳定,成球效果良好,大大提高水泥烧结质量。此系统改造主要为提高自动化程度和制造工艺水平考虑,由于功率较小省电效果还在其次。

生料均化给料系统

此系统用变频改造后,将所有送料口处的送料电机用变频器进行同步无机调速,等比例送料,提高均化效果,此点也是从制造工艺角度考虑。[page]

四、水泥选粉系统

水泥选粉系统的工作原理是根据所生产的水泥的标号的不同,调节选粉机和选粉风机的转速,从而选出不同细度的水泥制品。老式选粉机要调整风机轴上的扇叶的数量和角度,经过对比试验达到所要求的选粉细度;新式选粉系统分选粉机和选粉风机两部分,选粉机由滑差电机调速,选粉风机靠调节挡风板角度调节用风量。这两种系统都存在操作工艺复杂、调节精度差、浪费电能严重的缺点,特别是滑差点机不但费电,由于水泥制造环境粉尘严重,因此滑差头骨胀率特别高,维修困难。变频改造后,不管是老式系统还是新式系统,只要将电机调节到一个特定的转速就能选出所需要的细度的颗粒,在节约电能的同时还做到了连续化、自动化生产,既提高了劳动效率,又降低了劳动强度,综合效益明显。

五、立窑卸料系统

为使水泥烧结过程中加料、供风、卸料三平衡,立窑普遍采用滑差电机(电磁调速电机)做为盘塔式卸料装置的动力,该电机不但防护等级满足不了水泥生产现场环境的需要,而且在相同输出转速的条件下消耗的功率也比系列电机高出百分之二十左右,在降低转速时相差更多,因此采用变频调速系统代替滑差调速后,解决以上所诉的缺点,且调速性能远远高于滑差调速电机,在节电的同时维修费用也大大降低,在各行业得到普遍应用。

应用变频器对可以调速的电机进行控制,在节约大量电能的同时,还具有软起功能,同时降低了电机的起动电流和运行电流,降低整个电力系统和机械系统启动和工作时的负荷强度,延长了机械部件的使用寿命。另外对滑差电机的变频改造提高了电机的防护等级,减少了因环境恶劣而造成的电机故障率。

六、意外收获

由于变频器工作和启动时电流的下降,为其他设备的启动提供了必要的保证,无形中增加了工厂的电力容量,这对电网电压不稳和电力容量偏小的场合尤为有利。象天马水泥有限公司这样整体改造后,可省下200KVA的变压器容量,新上设备时变电所可暂不增容,可节省大量投资。

当然,经过变频改造后还应加强生产工艺方面的管理,再生产允许的条件下合理的调节电机的转速,以达到理想的节能结果。这有待于在以后的工作中加以不断的完善。

1在立窑罗茨风机上的应用

立窑煅烧熟料所耗的电能中,罗茨鼓风机的电耗一般占60%左右,随着电价的调整,电费在水泥生产成本中说占的比例越来越高。因此,降低鼓风机的能耗成为提高企业经济效益的重要一环。

对罗茨风机可由变频器改变风机的供电电源频率进行无级调速来调节风量,重庆地维水泥有限公司在1号窑132KW罗茨风机上安装变频器,节电率高达62.2%。吨熟料电耗由安装变频器前的15.22度下降到安装后的5.55度;河南焦作水泥厂在10000/吨水泥熟料旋窑生产线生料流态化系统55KW罗茨风机上安装了变频器后节电率高达73.2%,平均每日用电量由安装前的606度下降到安装后的162度,每日节电444度。

2在离心风机上的应用

有某些水泥厂是采用高压离心式风机进行供风,该种水泥窑的风量调节是通过风门开启度对风量进行调节。对离心风机的变频调速改造同样有巨大的节能潜力。这是因为离心式风机设备的流量与转速的成正比,压力与转速的平方成正比,功率与转速的立方成正比。因此在调节风量或流量时,如降低20%的风量或流量,功耗则会下降50%,但是必须注意,转速与压力是成平方关系,当转速下降20%时,压力则会下降60%,因此必须注意工艺要求的压力范围不能象罗茨风机那样,不用考虑转速与风压的关系。

3在立窑卸料机上的应用

立窑卸料机若采用滑差调速电机,其转速通常控制在300~1000rpm(工艺上根据窑的情况,对卸料速度进行控制的)。采用变频调速的方法取代滑差电机,经过多个厂家应用结果表明,平均节能达40%左右,这是因为滑差调速是一种耗能的低效调速方法。

由下列公式可知:

滑差电机主电机轴的输出功率:P0=KM0N0(P0表示输出功率,M0表示负载转速,N0表示电机转速,K为常数)

滑差头输出功率P1=KM0N1(P1表示输出功率,N1表示滑差头转速)

滑差头损耗功率:P=P0-P1=KM0(N0—N1)

由此可见,滑差电机的转速越低,浪费能源越大,而卸料机的转速通常在400rpm左右运行,因此改用变频调速的方法会有50~60%的节能效果。

5在预加水成球系统中的应用

目前,预加水成球技术在立窑水泥厂中应用已相当普遍。它在提高成球质量,改善煅烧操作条件,提高立窑熟料产量和质量方面取得了比较明显的效果。其结合微机双回路调节器,就能实现水料比例自动跟踪,自动调节,做到恒压供水。调节及时,极大地减轻了工人的劳动强度,同时也改善了成球质量,使预加水系统真正起到预湿成球的作用,为立窑生产出优质高产的熟料创造了条件。

针对上述问题,结合生料车间选粉机负荷转速不超过600r/min的特点,对选粉机电气部分进行变频调速技术改造。经实际测量,选粉机改造前,运行速度在594r/min时,输入电压385V,输入电流72A,功率因数0.82,故输入功率为40KW;改造后,运行速度在594r/min时,输入电压387V,输入电流18A,(热继电器也做了相应调整),功率因数0.92(变频器加装了直接电抗器)则输入功率为11KW。改造后一年中,没发生过任何故障,保证了系统的安全运行,大大减少了维护工作量和维修费用,而且节能效果十分显着。

变频器在水泥厂的应用还不止这些,比如说回转窑球磨机、卸料圆、盘给料机、双管绞刀裙、板喂料机调速皮带称喂、煤绞刀、蓖冷机等一切需交流调速的设备都可以采用变频调速器。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

用单片机产生矩形波经放大电路放大后驱动电机

采煤机再制造工艺实践工作为今后采煤机的再制造以及煤机装备的循环利用打下了坚实的基础。控制模块设计与分析,硬件控制模块设计采用N沟道MOS管IRF540驱动,该电路功耗小,驱动能力较好,成本较低,在PWM输出端与驱动端之间加入了光电耦合器,使控制电路与驱动电路隔离,有效保护了控制装置。

PWM输出模块PWM相对线性控制具有节能、易控制、提高电机运行效率的特点,采用PWM电路控制电机。用单片机产生矩形波,经放大电路放大后驱动电机。该方案优点是不需要另搭外围电路,通过编程即可改变输出矩形波占空比,从而控制电机。PWM产生及占空比控制,使用单片机产生PWM时,本文先后采用了两种方法,一种是编写延时由直接输出,另一种是使用定时器,通过周期延拓的方式输出PWM波。但是IO口直接输出的方式在控制占空比时不够精确,因此而采用键盘控制时,使用了外部中断来控制占空比。

使用了三个独立键盘,分别控制占空比增加、占空比减小以及特定占空比(45°时的占空比)。使用单片机、步进电机验证了单片机控制模式方案设计,采用的测试仪器有示波器、数字万用表、秒表等测试设备。测试结果表明当加占空比键按下后,转动角度值变大;减占空比键按下后,转动角度值值变小。实验证明占空比控制非常重要,也证明了PWM波的频率对响应速度有很大影响,同时验证了方案的可行性,为微量注射泵控制系统设计具有一定的参考价值。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

电机扭矩试验台的结构组成

电机微扭矩检测试验台主要分硬件部分和软件部分,硬件部分由气缸、伺服电机、伺服卡、采集卡、工控机等来协调待测EPS电机的运转。软件部分主要是驱动伺服、气缸协同工作,控制设备的运行来完成检测,并从采集卡实时采集角度、扭矩传感器输出电压等数据参数,根据各项试验的数据绘制图表报告,计算产品损耗扭矩、波动扭矩,并标定产品是否合格。

测试台硬件本试验的硬件部分主要是来控制扭力传感器和电机、气缸的协调动作,实时进行数据采集,主要包含如下部分:

(1)气缸:测试过程开始前将伺服与待测EPS电机键槽推送到位。

(2)伺服电机:用来控制待测EPS电机的转动,并反馈角度。

(3)采集卡:用来采集各项实时参数,包括角度、扭矩。选用NIPCI6280采集卡。

(4)伺服卡:用来驱动伺服电机,精准控制电机运行动作。

选用研华PCI1240U(四轴)伺服卡。

硬件部分的工作原理主要是根据所确定的动作来完成。采用多功能采集卡进行模拟、数字信号的输入输出采集,伺服卡控制电机的各种运动状态(不同转速、方向)。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

电机与电力拖动在经济中的作用与发展趋势

在工农业中,国防事业和人们的日常生活中,电能是最重要的能源之一。电机在日常生活中起着重要作用,在电机中,电机碳刷,电机滑环是不可缺少的。与其他能源相比,电能具有转换经济、传输和分配容易、使用和控制方便等优点外。

自然界中不存在可以直接使用的电源,电能通常是由其他形式的能量转换而来的。其中将机械能转换为电能的装置就是发电机。

我们碳刷、滑环厂家以为电能的传输和分配离不开变压器。发电厂的碳刷质量十分重要,发电厂发出的电能通过电力网应能够实现远距离传输,一般碳刷发电机传输的电压为10-20KV,为了实现远距离传输、减少传输损耗,常用变压器将发电机发出的电压升高至110KV/220KV/330KV/500KV,甚至更高。

输送到用电地区后,要经过变压器将至用户能承受的数值,才能供用户使用。

电能的利用就是将电能转换为其他形式的能量。利用电动机将电能转换为机械能,拖动生产机械工作是电能利用的一个重要方面。用电动机拖动生产机械所组成的系统称为电力拖动系统。电力拖动系统具有以下几个优点:传动效率高、运行经济;电动机种类和规格繁多,具有良好的特性,能满足不同机械的需要;电力拖动系统操作和控制方便,能实现自动控制和远距离控制。

在现代工业企业中,几乎所有生产机械都是由电动机拖动的,如各种机床、生产线、风机、水泵等。可以毫不夸张的说,没有电动机、没有电力拖动技术,就没有现代化工业。

迄今为止,世界上几乎所有的电能是有同步发电机发出来的,发电机生产的大部分电能是通过电动机消耗的。因此,电机和电力拖动技术在国民经济中具有极其重要的作用。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

变频电机轴电压与轴电流的产生机理分析


3.轴承模型与轴承电流的产生由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均由一个轴承支撑,其结构如图3所示。以其中一个轴承为例,轴承的滚道由内滚道与外滚道组成,当电机转动时,轴承中的滚珠被润滑油层包围,由于润滑油的绝缘作用,轴承滚道与滚珠之间形成电容,如图3b)所示。这两个电容在转子-定子回路中以串联形式存在(为便于分析,不考虑滚珠的阻抗),可以等效成一个电容cbi,i代表轴承中的第i个滚珠。对于整个轴承而言,各个滚珠与滚道之间的电容以并联形式存在。所以整个轴承内可以等效成一个电容cb。据对轴承的分析,轴承可用一个带有内部电感和电阻的开关来等效。当滚珠未与滚道接触时,开关断开,转子电压建立;当转子电压超过油膜门槛电压时,油膜击穿开关导通,转子电压迅速内放电,在轴承内形成较大放电电流。va、vb和vc为电机三相输入电压,l’、r’和c’为输入电压耦合到转子轴的等效集中参数,cg为crf和cb并联后的等效电容。当轴承滚珠和滚道接触或者轴承内油层被击穿时,cb不存在,此时cg仅代表转子轴对机壳的耦合电容。电容cb是一个多个变量的函数:cb(q,v,t,η,λ,λ,εr)[2]。其中q代表功率,v代表油膜运动速度,t代表温度,η代表润滑剂粘性,λ代表润滑剂添加剂,λ代表油层厚度,εr代表润滑剂介电常数。轴承电容cb与定子到转子耦合电容csr,比定子到机壳耦合电容csf和转子到机壳耦合电容crf小得多。这样一来,耦合到电机轴承上的电压便不至于过大,这是因为crf与cb并联后的电容比耦合回路中与之串联的csr大得多,而串联电容回路中,电容越大承受的电压反而越小。事实上,根据分布电容的特点,很大一部分共模电流是通过定子绕组与铁芯之间的耦合电容csf传到大地去的,因此轴承电流只是共模电流的一部分。从图4可看出,形成轴承电流有两种基本途径。一是由于分布电容的存在,定子绕组和轴承形成一个电压耦合回路,当绕组输入电压为高频pwm脉冲电压时,在这个耦合回路势必产生dv/dt电流,这个电流一部分经crf传到大地,另一部分经轴承电容cb传到大地,即形成所谓的dv/dt轴承电流,其大小与输入电压以及电机内分布参数有关。二是由于轴承电容的存在,电机轴上产生轴电压,当轴电压超过轴承油层的击穿电压时,轴承内外滚道相当于短路,从而在轴承上形成很大放电电流,即所谓的电火花加工(electricdischargemachining-edm)电流。另外,当电机在转动时,如果滚珠和滚道之间有接触,同样会在轴承上形成大的edm电流。为了定量edm及dv/dt电流对轴承的影响,轴承内的电流密度十分关键。建立电流密度需估计滚珠与滚道内表面的点接触区域。根据赫兹点接触理论(hertzianpointcontacttheory),轴承电气寿命可用如下公式求得[2]:eleclife(hrs)=(7)式中,代表轴承电流密度。一般而言,dv/dt电流对轴承寿命影响很小,而由edm产生的轴承电流密度很大,使得轴承寿命大大降低。另外,空载时轴承损坏程度反而比重载时大得多,这是因为重载时轴承接触面积增大,无形中减小了轴承电流密度。

4.轴电压与轴承电流的仿真分析为进一步讨论轴承电流与pwm逆变器输出电压特性以及电机端有无过电压之间的关系,本文对dv/dt电流与edm电流两种形式的轴承电流分别进行仿真分析,结果发现,轴承电流不仅与逆变器载波频率有关,且与逆变器输出脉冲电压的上升时间有关,同时当电机端出现过电压时轴承电流明显增加。先假定电缆长度为零,根据轴承电流的存在形式可知,dv/dt电流主要是由输入跳变电压引起,因此dv/dt电流大小与逆变器载波频率和电压上升时间有关。逆变器载波频率越高,一个正弦波周期内产生的dv/dt电流数量也就越多,但此时电流幅值不变。脉冲电压上升时间是影响dv/dt电流幅值的决定性因素,另外分布电容的大小也影响dv/dt电流幅值。而edm电流产生的直接原因是轴电压的存在,因此轴电压的大小决定了edm电流幅值,轴电压的大小决定于输入电压的大小及电机内分布电容的大小。虽然逆变器载波频率和脉冲电压上升时间都会影响轴电压的形状,但轴电压的峰值与二者都没有关系,因此edm电流与二者也没有本质的联系,这是edm电流与dv/dt电流最大区别之处。当然,edm电流还与轴承油层的击穿电压有关,击穿电压越高,产生的edm电流越大。为讨论方便,假设轴承击穿电压大于或等于轴电压。

4.1改变上升时间tr仿真得到不同上升时间的轴电压与轴承电流波形如图5所示,其中图a)和b)为轴电压波形,图c)和d)为轴承电流波形,电流波形中第一次出现振荡的为edm电流,其他为dv/dt电流。由分析可知,1)tr增大轴承电流减少,包括dv/dt电流与edm电流。尤其是dv/dt电流幅值减小十分明显,但tr对edm电流的影响不大,这主要是因为edm电流由轴电压以及轴承阻抗决定;2)当tr小于一定值(约为200ns)后,dv/dt电流甚至高于edm电流;3)改变上升时间对轴电压的影响不大;4)特殊现象:轴电压在电压击穿时出现两次振荡,tr不影响第一次振荡,但影响第二次振荡,且第二次振荡随着tr的上升而减少,其原因是轴承短路后定子绕组到转子的耦合路径依然存在,所以出现一个dv/dt电流振荡。

4.2改变耦合参数及轴承参数定子绕组对转子的耦合电容越大,轴电压越高,dv/dt电流与edm电流均增加;轴承电容减小,dv/dt电流减小;但edm电流基本不变,此时轴电压上升。其原因是:在共模电路中,轴电压是由定子绕组对转子铁心的电压耦合造成的,维持这一电压的存在靠轴承电容以及转子对机壳耦合电容。由于后两者并联,再与前者串联,因此轴电压按电容值进行分配,电容越大压降越小。一般情况下,轴承电容与转子对机壳耦合电容比定子绕组对转子耦合电容大得多。在只改变轴承电容的情况下,轴承电容越小,整个并联电容等效值下降,轴电压反而上升,由于轴承上的dv/dt电流与容抗及dv/dt成正比,在dv/dt不变时,容抗减小,dv/dt电流下降。仿真结果如图6所示。

5.抑制办法从前面的理论研究和仿真分析可以看出,电机轴承电流产生的一个主要原因是逆变器输出的高频脉冲具有过高的dv/dt前后沿,由此可知,抑制轴承电流的有效办法就是降低逆变器输出电压的dv/dt。但是,逆变器本身输出的脉冲电压上升时间是由功率器件的开关特性决定的,因此只能在逆变器输出端附加装置改变其输出电压的dv/dt。降低逆变器输出电压上升沿dv/dt的一个最直接的办法是在逆变器输出端串上大的电抗器,即可构成所谓的“正弦波滤波器”,逆变器输出的脉冲电压在经过大电抗器后成为完全的正弦波电压,这样便可以消除轴电压与轴承电流。但是这种办法的代价是电抗器的功率损耗大,体积大,造价高,在普通的变频调速系统中应用不是很合适。本文采用折中办法,在逆变器输出端串接电感值不大的电感以抑制电流的快速变化,同时在输出端线间设置rc电抗以吸收输出电压的高次谐波,这样可以适当降低输出脉冲电压上升沿的dv/dt值,达到抑制轴承电流的目的。逆变输出滤波器降低了电机输入脉冲电压的电压上升率,这样一来,电机内分布电容的电压耦合作用便会大大减弱,轴电压以及由此引起的edm电流都会下降,同时由于电压变化率引起的dv/dt电流也会明显减少,因此滤波器可以有效地抑制轴承电流的产生。图8给出了加入滤波器(未接地)前后的电机轴承电流仿真波形,其中,逆变器载波频率为5khz,脉冲电压上升时间为200ns,电缆长100m。从图中可以看出,无论edm电流还是dv/dt电流都明显减少。仿真中还发现,将滤波器接地,无论dv/dt电流还是edm电流相对不接地而言均显着减少,其原因是rc吸收高次谐波的作用更强,能够更好地改善电压波形。

6.在高频pwm脉冲输入下,电机内分布电容的电压耦合作用构成系统共模回路,从而引起轴电压与轴承电流问题。轴承电流主要以三种方式存在:dv/dt电流、edm电流和环路电流。轴电压的大小不仅与电机内各部分耦合电容参数有关,且与脉冲电压上升时间和幅值有关。本文着重讨论前两种方式的轴承电流。dv/dt电流主要与pwm的上升时间tr有关,tr越小dv/dt电流的幅值越大。逆变器载波频率越高,轴承电流中的dv/dt电流成分越多。edm电流出现存在一定的偶然性,只有当轴承润滑油层被击穿或者轴承内部发生接触才可能出现,其幅值主要取决于轴电压的大小。以降低脉冲电压上升率为原则,设计一种在逆变器输出端串小电感并辅以rc吸收网络达到抑制轴电压与轴承电流的目的,仿真结果验证了该方法的有效性。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

龙门刨床的电气改造及节电经济效益分析

本文介绍了早期的由发电机组拖动的龙门刨床或单臂刨床现存的问题,并简述了针对该种类型的刨床改造方式:采用全数字直流调速装置组合先进的PLC控制方式,着重强调了改造后的节能降耗所带来的经济效益以及改造后的其它特点。

一、序言

随着社会的进步,科技的发展,产于上个世纪七、八十年代的龙门刨床的电器控制线路已经十分落后,而且老化严重,故障频繁,维修非常困难,费时费力,效率低,能耗大,同时噪音也很大,污染严重。经过多年的时间经验,我们对老式龙门刨床的电气控制线路进行了彻底的技术改造,将发电机组、交磁扩大机控制的龙门刨床改造成为全数字智能化的电气控制系统。

上个世纪七、八十年代的龙门刨床工作台一般是由一台60KW直流电机拖动。该直流电机参数为:60KW,220V,305A,1000RPM,励磁为220V,4.11A。该直流电机电源采用电动机-直流发电机组和交磁扩大机提供(简称K-F-D系统),采用调直流发电机的励磁电流方式来改变直流电动机的电枢电压,从而达到调速的目的。原来整个电气控制系统比较复杂,使用电器元件也比较多,加之使用时间长,故障频繁。我公司综合以往改造经验,B2010A、B2012A、B2012Q、B2151、B2152、B2016A、BJ2020、B20125Q等10余种型号的龙门刨床及单臂刨床都很适合全数字智能化控制的电气系统改造。

二、早期龙门刨床的特点:

1、刨床的工作台驱动是由交流电动机、直流发电机、直流电动机及交磁扩大机组成。K-F-D控制系统的主要缺点是:起动电流大,对电网容量要求高,机械传动能耗大,传输效率低。

各电机基本参数见下表:

<center></center>2、改造前的龙门刨床电控系统存在的问题及缺点:

⑴设备使用时间长达数十年,电器元件严重老化,故障率频繁,维修费用高,已不能满足目前生产加工的需要;

⑵由于采用的是交直流电动机组,其效率只有0.5~0.68,并且能耗高;

⑶主传动及控制部分中间环节较多,不但增加了维护工作量,也使整个系统可靠性大大降低。

⑷工作台换向及减速靠机械式限位开关实现,减速及换向时撞击声音大,且整个电控系统附带有各种电阻、继电器多,故障点多,低速时速度不稳,换向不稳定,常会出现爬行、越位等故障;

⑹工作台调速范围小,精度(D≤30),加工工件的表面质量差;

⑺占地面积大,噪音高。

三、龙门刨床改造方式及改造后的特点:

1.龙门刨工作台直流电机调速系统的改造:

改造后的龙门刨床工作台直流电机采用英国欧陆公司生产的590+/380A直流调速装置驱动,完全取代直流发电机组和交磁扩大机,实现了工作台的无级调速、自动减速、换向以及撞到极限限位后停车等动作。欧陆590+是具有较高水平的全微机化工业直流电机调速驱动器,输出电流范围在15A~2400A,该产品还具有控制、监控、保护和串行通讯的功能。

590+直流调速装置还有一系列可供用户随意设定的参数,这些参数有些来自外部,如速度给定、转矩给定、速度反馈以及电机的各种特性参数等,同时配备I/O接口,以及P3串行通讯接口,可以方便的与上位机联接通讯,以满足各种参数设置以及与其他装置通讯的需要。

2.用PLC实现龙门刨床的其他电器动作的自动控制:完成龙门刨床自动进刀、抬刀、落刀、横梁升降、横梁夹紧放松、各刀架快速移动以及工作台的加速、减速、换向等各种动作的正常运转。

3.工作台行程限位开关更换为电磁感应的接近开关:性能更稳定,响应时间快,而且使用寿命更比原来的行程开关更长久。

4.在直流电机尾端加装测速发电机后:实现闭环控制,提高控制及定位精度。

5、使用效率:

由欧陆590+和PLC相互配合进行改造后的龙门刨床控制系统最低速度可达5rpm,最高为1500rpm,从起步到全速只需8秒时间,甚至更短时间。从全速到减速换向,可在12秒时间内完成,且换向平稳无冲击,不会发生振荡、爬行、越位等现象,同时可以恒转矩切削,因而大大提高加工精度及效率。通过悬挂按钮箱能完成系统的启动、停止、自动等功能。加工长度范围由悬挂按钮站和工作台上的可以滑动的挡铁完成行程设置,并可以通过PLC的记忆功能来保存,电气柜上有各种报警指示,几乎可以实现无故障、免维护运行。

四、效益分析

使用欧陆590+直流调速装置和PLC结合控制后,节能效果十分明显,改造周期短。因此,将先进的直流调速装置应用到龙门刨床的工作台调速中,无疑是一种很大的技术革新,可以带来较大的经济效益。

以下是我公司对襄樊某厂B220型龙门刨床改造前后的测试实例:

其主传动部分(工作台)采用直流发电机组拖动直流电动机,功率60KW,是主要能耗。其余功耗如横梁升降和刀架的进给等较小可忽略不计。经改造后,电费成本、工艺性能、工作环境及电网干扰等均得到显著改善。

1、测试参数:

有功功率、三相电流、三相电压、功率因素、噪音强度、工作台的进给速度等

2、改造前后测试相关参数:

3、结论分析:

⑴技术数据

⑵老式控制系统与新式控制系统的效果对比见下表:

⑶所产生效益

①直接经济效益

原发电机组在多年生产、制造及用户使用中测定,其起动电流大,对电网容量要求高,且空载电流达80-100安,在工作间隔时间(调整、装卸工件时间),这些电能被白白浪费。改用新型数字调速系统后,这个空载电流完全可以节省下来,且工作间隔时间越长节电效果越明显。按计算,节约功率为△P:

U2=380V;△I取其空载电流中间值

90A;COSΦ取0.40

则△P=1.732×380×90×0.4=24kW

每小时节电24度,按每天工作间隔时间三小时、全年按310天计算:

年节电:W=24×3×310=22320kWh

拆除交磁发电机后,每小时可节约电能约3kW,按每天两班制计算:

年节电:W=3×16×310=14880kWh

另外,采用新型数字调速系统,可以省去了由多台电机之间电能传递而造成的效率损失,其数值为所需加工零件电能的6-10%,按一般性加工时,每天省去的传动效率损耗为80度,全年节电即为24800度。

以上三项合计,全年节电可达6万多度,若每度按0.6元计算,全年节电约为4万余元。

②提高了机床的电气自动化程度,大大降低了机床的故障率和维修费用,年节约成本约1万余元.

③占地面积小,无噪声。除此外,拆除后的发电机组还可以再利用,创造更多的经济价值。

4.改造后的龙门刨控制系统的特点:

⑴该数字直流传动装置能耗低,效率高。工作间隔无损耗,大大节约电能,其效率可达到0.95以上,而直流发电机组只有0.7左右;

⑵起动电流小(起动电流I≤1.5Ie),对电网的冲击小;

⑶调速性能高。590+是一种高精度传动装置,以其自身的优点使整个主传动控制系统的精度、调速范围、快速性能有了很大的改善,提高了加工能力及其加工质量;

⑷结构简单,可靠性高。与交磁扩大机组相比,全数字可逆直流调速装置可减少70KW直流发电机一台,55KW交流电动机一台,交磁放大机一套,同时大大减少了占地面积,使控制系统结构简单、体积缩小;

⑸其它动作均由PLC实现,电器元件少,简单直观。用可编程控制器取代繁杂的交直流继电器控制,大大提高了系统的可靠性,同时维护也十分方便,减少运行成本;

⑹装机水平高,具有完善的保护功能。系统具有良好的保护和监控功能,PLC有自身的输入/输出监控指示灯,而全数字直流调速装置则更有良好的保护监控功能,具有故障存储记忆,自适应参数优化等多种功能;

⑻改造后,由于取掉了交流机组,因而可无噪音运行。

五、结论

早期由发电机组拖动的龙门刨床和单臂刨床都很适合上述电气改造方式。改造后,不仅能耗大大降低,使用效率也得到很大提高。用户仅需要投资几万元,经过一两年的时间就可以收回成本。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接