工业伺服节能改造,关于冬季工厂节能提案信息聚合页,专注于冬季工厂节能提案:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
您的位置:首页 > 冬季工厂节能提案

注塑机伺服节能改造

  注塑机工作原理  原定量泵(多为叶片泵)+ 异步(鼠笼式)电机的运行中,马达高速恒定持续运转,使油泵100%输出,当动作的速度越慢、动作的 时间越长、压力越大,潜在节能的幅度

6722018-06-28 09:34:30

查看详情

铝型材挤压机节能改造方案

一、项目总述某铝型材公司作为铝型材行业的领军者、企业管理的先驱者,在响应国家节能减排号召、开展能效管理工作方面拥有良好的管理基础和实施条件。本报告结合该公司的管理

2832018-06-25 14:35:10

查看详情

液压站伺服节能改造

液压站伺服节能改造 液压站工作原理电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后

2222018-06-28 09:31:14

查看详情

油压机节电节能改造方案

第一章 油压机现状介绍 1.1 原机台配置情况 贵司现有油压机47台,进行配置,改造前机台具体配置如下: 品牌 吨位 T 数量 台 电机功率 电机转速 油泵排量 系统流

2182018-06-25 14:13:47

查看详情

为什么注塑机伺服节能改造要比其他节能方式节电率要高?

为什么注塑机伺服节能改造要比其他节能方式节电率要高?注塑机节能改造的方法有很多,其中主流方式为:将原系统改造为伺服控制系统。为什么伺服控制系统要比其

2172018-08-15 17:00:09

查看详情

压铸机节能改造方案

第一章 压铸机现状介绍1.1 原机台配置情况现有压铸机20台进行配置,改造前机台具体配置如下: 品牌 型号 数量 油泵型号 电机转速 RMP 电机功

2082018-06-25 13:52:35

查看详情

工厂节能降耗措施有哪些?

工厂节能降耗措施有哪些?徕卡节能电气,专业从事工业节能15年,在工业节能方面,主要对生产车间内大型液压油压设备做伺服系统节能改造。工厂的节能降耗项目,节能改造

2082018-08-03 13:06:08

查看详情

空压机节能改造

  空压机节能改造  对空压机节能的改造方式主要有以下两种  1.变频调速方式  采取变频调速方式来降低空压机电动机的轴功率输出。改造之前,空压机的压力达到设定压力

1872018-06-25 16:42:26

查看详情

油压机伺服节能改造

  油压机伺服节能改造  油压机工作原理  电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、

1832018-06-25 16:26:02

查看详情

注塑机料筒节能改造

  注塑机料筒节能改造  注塑机料筒节能通过注塑机干燥机高效节能系统进行节能。  该干燥机高效节能系统是将干燥机排出的热风,经高效节能转换系统,吸收热量排出湿气粉尘

1682018-06-29 16:22:33

查看详情

注塑机节能改造方案

某磨具企业,注塑机节能改造方案

1572018-06-25 13:43:47

查看详情

工业空压机与锅炉怎样配合进行节能改造?

  随着社会发展,对能源需求剧增,为了进一步推进科学发展,减排降耗节能改造迫在眉睫。  企业内部空压机基本24小时持续运行供气,对企业能源消耗"做出重大贡献",如果空压机能

1332019-02-22 09:49:45

查看详情

空压机热回收项目节能改造

空压机热回收项目 内容 节能效果 备注 采暖 热水 产热水量(50℃升至60℃) 388吨/天 10℃温差 满足采暖面积

1212018-06-25 14:27:06

查看详情

专访苏州徕卡节能电气技术有限公司副总倪春林

  专访苏州徕卡节能电气技术有限公司副总倪春林  前言  有一句话说得非常好,没有传统的行业,只有传统的企业。这两个月,当我们的编辑团队深入近30家企业采访交流时,不论采

1192019-02-12 14:07:42

查看详情

徕卡节能发展自身技术优势,快速布局节能行业

  徕卡节能:加速节能产业高端化布局  继信息消费、光伏产业、基础设施建设投资之后,发展节能环保产业俨然成为了新一届政府稳增长组合拳中一支有生力量。2013年8月,国务院

1172019-02-20 16:03:03

查看详情

注塑机如何实现30%~80%节电率的节能改造

注塑机做节能改造,首选推荐“伺服控制系统”的节能改造。 注塑机,典型的周期性动作、变动负荷的生产设备。其一套完成的生产周期为“锁模、射胶、溶

1162018-08-21 14:28:55

查看详情

工业节能与大数据相结合,为节能事业发展指明方向

  徕卡节能:未来工业节能与大数据结合为发展方向   (徕卡节能大数据技术能源管理系统示意图)  节能减排作为我国当前重点发展产业,发展好坏事关我国当前“调结构,稳

1132019-02-18 11:28:11

查看详情

空压机余热回收节能改造

  空压机余热回收节能改造  空压机余热回收是一项非常环保的节能方式。空压机余热回收是将空压机的高温油经过热交换等技术处理把热量传递到冷水中,冷水被加热后流到保温

1092018-06-25 16:44:55

查看详情

注塑机伺服节能改造的原理大揭秘

  注塑机伺服节能改造的原理大揭秘   注塑机通过徕卡节能设备产品改造之后,正常节电率在:30%-80%  那注塑机节能改造,其改造原理是什么?  注塑机节能改造后的设备,系统

1042018-06-26 14:49:16

查看详情

中央空调节能改造

    中央空调工作原理  一般来说,中央空调系统的大负载能力是按照天气热、负荷大的条件来设计,但实际上系统极少在这些极限条件下工作。根据有关资料统计,空调设备95%的

972018-06-25 16:35:37

查看详情

节能节电行业乘风破浪前行者:徕卡节能电气

  徕卡节能:节电产业是最具发展潜质的朝阳产业  中国的节电市场是一个沉睡的市场,据不完全统计,它具有万亿的巨大市场份额,谁能唤醒这个市场,谁就将获得无法估量的回报。据美

972019-02-20 10:01:28

查看详情

水泵节能改造

  水泵节能改造  离心泵节能方式有三种:  A. 水泵变频调速节能(比较常见)  B. 水泵叶轮改造节能(比较少)  C. 更换电机和水泵节电(减少水管阻力和选择合理扬程、流

952018-06-25 16:40:45

查看详情

注塑机节能改造,一般都在哪些部位做节能改造

  注塑机节能改造,一般都在哪些部位做节能改造?   现在主流做注塑机节能改造的,一般改的部位在:电机、油泵、干燥机,加热部位的加热圈节能。   注塑机动力部位伺服节能

952018-08-03 14:33:41

查看详情

钢铁冶金行业节能改造工程项目

  钢铁冶金行业常用设备有不同类型的液压站,针对液压站进行伺服节能改造,节能降耗效果明显。  大型液压站一般使用行业为:冶金、有色金属加工、矿山、港口、石油化工及风力

912018-06-25 15:14:08

查看详情

液压系统运行状况分析,如何进行节能改造

    液压系统主要应用场景:  在钢厂、铝型材厂家、注塑厂家、汽车配件(四门一盖、汽车外壳等部件)五金冶金类行业广泛应用液压系统。  主要体现设备有:注塑机、压铸机

912018-12-21 10:19:21

查看详情

注塑机做节能改造,一般都用什么节能方案?

  注塑机做节能改造,一般都用什么节能方案?  一、注塑机节能改造,目前主流的节能改造方式是:  1、液压动力系统进行伺服系统节能改造。  2、干燥筒的节能改造,余热回收

892018-08-03 14:07:08

查看详情

循环冷却水节能改造

循环冷却水节能改造   产品概述  循环水智能控制系统内含四大功能模块:  1. 带气候补偿的人工智能控制系统  2. “风”“水”平衡系统  3. 水

882018-06-25 16:38:25

查看详情

循环水节能优化系统

  循环水节能优化系统  循环水节能优化工作原理:  循环水节能优化系统采用国内先进的控制系统,对循环水系统进行优化控制。主要利用智能控制系统对运行设备进行控制,控制

852018-11-13 10:16:35

查看详情

企业推进注塑机伺服节能改造,想知道注塑机在什么工作阶段最省电节能?

  企业推进注塑机伺服节能改造,想知道注塑机在什么工作阶段最省电节能?   一般注塑机在注塑成型“保压”以及产品“冷却”的过程中,异步电机都是在

832018-08-09 17:01:30

查看详情

油压|液压节能改造:伺服系统与变量泵有哪些区别?

  油压|液压节能改造:伺服系统与变量泵有哪些区别?   首先,油压|液压设备节能改造的推行,伺服系统比变量泵节能这是毋容置疑的。伺服控制系统节电率一般在30%~80%。(是什

812018-08-01 15:03:58

查看详情
节能改造关注问答
1、

直流电机使用检查注意事项

1、步进电机周围应保持干燥,其内外部均不应放置其他物件。电机的清洁工作每月不得少于一次,清洁时应以压缩空气吹净内部的灰尘,特别是换向器、线圈连接线和引线部分。

2、换向器的保养

(1)换向器应是呈正圆柱形的表面,不应有机械损伤和烧焦的痕迹。

(2)换向器在负载下长期无火花运转后,在表面产生一层褐色有光泽的坚硬薄膜,这是正常现象,它能保护换向器的磨损,这层薄膜必须加以保护,不能用砂布摩擦。

(3)若换向器表面出现粗糙、烧焦等现象时可用“0”号砂布在旋转着的换向器表面进行细致研磨。若换向器表面出现过于粗糙不平、不圆或有部分凹进现象时应将换向器进行车削,车削速度不大于1.5m/s,车削深度及每转进刀量均不大于0.1mm,车削时换向器不应有轴向移动。

(4)换向器表面磨损很多时,或经车削后,发现云母片有凸出现象,应以铣刀将云母片铣成1~1.5mm的凹槽。

(5)换向器车削或云母片下刻时,须防止铜屑、灰尘侵入电枢内部。因为要将电枢线圈端部及接头片覆盖。加工完毕后用压缩空气做清洁处理。

3、电刷的使用

(1)电刷与换向器的工作表面应有良好的接触,电刷压力正常。电刷在刷握内应能滑动自如。电刷磨损或损坏时,应以牌号及尺寸与原来相同的电刷更替之,并且用“0”号砂布进行研磨,砂布面向电刷,背面紧贴换向器,研磨时随换向器作来回移动。

(2)电刷研磨后用压缩空气作清洁处理,再使电动机作空载运转,然后以轻负荷(为额定负载的1/4~1/3)运转1小时,使电刷在换向器上得到良好的接触面(每块电刷的接触面积不小于57%)。

4、轴承的保养

(1)轴承在运转时温度太高,或发出有害杂音时,说明可能损坏或有外物侵入,应拆下轴承清洗检查,当发现钢珠或滑圈有裂纹损坏或轴承经清洗后使用情况仍未改变时,必须更换新轴承。轴承工作2000~2500小时后应更换新的润滑脂,但每年不得少于一次。

(2)轴承在运转时须防止灰尘及潮气侵入,并严禁对轴承内圈或外圈的任何冲击。

5、绝缘电阻

(1)应当经常检查步进电机的绝缘电阻,如果绝缘电阻小于1MΩ时,应仔细清除绝缘上的污物和灰尘,并用汽油、甲苯或四氯化碳清除之,待其干燥后再涂绝缘漆。

(2)必要时可采用热空气干燥法,用通风机将热空气(80℃)送入电动机进行干燥,开始绝缘电阻降低,然后升高,最后趋于稳定。

6、通风系统

小编建议应经常检查定子温升,判断通风系统是否正常,风量是否足够,如果温升超过允许值,应立即停车检查通风系统。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

什么是有刷电机?什么是无刷电机?

电机工作时,线圈和换向器旋转,磁钢和碳刷不转,线圈电流方向的交替变化是*随电机转动的换相器和电刷来完成的。在电动车行业有刷电机分高速有刷电机和低速有刷电机。有刷电机和无刷电机有很多区别,从名字上可以看出有刷电机有碳刷,无刷电机没有碳刷。

1、有刷电机电机工作时,线圈和换向器旋转,磁钢和碳刷不转,线圈电流方向的交替变化是随电机转动的换相器和电刷来完成的。在电动车行业有刷电机分高速有刷电机和低速有刷电机。有刷电机和无刷电机有很多区别,从名字上可以看出有刷电机有碳刷,无刷电机没有碳刷

2、无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。由于无刷直流电动机是以自控式运行的,所以不会象变频调速下重载启动的同步电机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。

3、有刷电机是传统产品,性能比较稳定。

无刷电机是升级产品,其寿命性能比有刷电机好。但其控制电路比较复杂,对元件的老化筛选要求比较严格。虽然电机寿命长但控制电路容易出毛病。因此选用无刷电机要经过严格的可靠性试验以确保质量。,但是随着技术的不断升级几步,无刷电机技术已经相当成熟。

4、在实际生产过程中,由于有刷有齿直流电机是高速电机,齿轮的齿很小,易磨损,但力量大,爬坡能力强。而无刷直流电机,在使用过程中省去了二、三年换碳刷的麻烦。但由于在控制无刷电机的过程,要求精度极高。而且,无刷电机控制器的价钱也较高。相比之下有刷无齿的直流电机,虽然要更换碳刷,但更换碳刷是十分容易的,而且电机的控制较为简单,电机运转平稳,安全系数高。

5、有刷电机是指电机是直流电输入,控制它的控制器只给它提供大小电流就可以调速了;而无刷电机其实就是个三相交流电机,靠控制器把直流电转换成三相交流电,并根据电机里的传感器霍尔元件进行换相使电机正常运转。直接来说,无刷电机比有刷电机寿命长、起步有劲省电,但是控制器却比有刷控制器成本高。目前,现在的都是无刷控制器,有刷的已经基本淘汰了。电动车控制器是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件,它就象是电动车的大脑,是电动车上重要的部件。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

三相异步电动机有几种制动方式

三相异步电动机切除电源后依惯性总要转动一段时间才能停下来。而生产中起重机的吊钩或卷扬机的吊蓝要求准确定位;万能铣床的主轴要求能迅速停下来。这些都需要对拖动的电动机进行制动,其方法有两大类:机械制动和电力制动。

1.机械制动

采用机械装置使电动机断开电源后迅速停转的制动方法。如电磁抱闸、电磁离合器等电磁铁制动器。

1.1.

电磁抱闸断电制动控制电路。

原理分析:合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。断开开关电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。

倒顺开关接线:这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动)等。其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。

1.2.电磁抱闸通电制动控制电路

电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。

机械制动主要采用电磁抱闸、电磁离合器制动,二者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开),克服弹簧的拉力而满足工作现场的要求。电磁抱闸是靠闸瓦的摩擦片制动闸轮,电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。

2.电力制动

电动机在切断电源的同时给电动机一个和实际转向相反的电磁力矩(制动力矩)使电动迅速停止的方法。最常用的方法有:反接制动和能耗制动。

2.1.反接制动

在电动机切断正常运转电源的同时改变电动机定子绕组的电源相序,使之有反转趋势而产生较大的制动力矩的方法。反接制动的实质:使电动机欲反转而制动,因此当电动机的转速接近零时,应立即切断反接转制动电源,否则电动机会反转。实际控制中采用速度继电器来自动切除制动电源。

反接制动控制电路,其主电路和正反转电路相同。由于反接制动时转子与旋转磁场的相对转速较高,约为启动时的2倍,致使定子、转子中的电流会很大,大约是额定值的10倍。因此反接制动电路增加了限流电阻R。KM1为运转接触器,KM2为反接制动接触器,KV为速度继电器,其与电动机联轴,当电动机的转速上升到约为100转/分的动作值时,KV常开触头闭合为制动作好准备。

反接制动分析:停车时按下停止按钮SB2,复合按钮SB2的常闭先断开切断KM1线圈,M1主、辅触头恢复无电状态,结束正常运行并为反接制动作好准备,后接通KM2线圈(KV常开触头在正常运转时已经闭合),其主触头闭合,电动机改变相序进入反接制动状态,辅助触头闭合自锁持续制动,当电动机的转速下降到设定的释放值时,KV触头释放,切断KM2

线圈,反接制动结束。

一般地,速度继电器的释放值调整到90转/分左右,如释放值调整得太大,反接制动不充分;调整得太小,又不能及时断开电源而造成短时反转现象。

反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。因此适用于10KW以下小容量的电动机制动要求迅速、系统惯性大,不经常启动与制动的设备,如铣床、镗床、中型车床等主轴的制动控制。

2.2.能耗制动

电动机切断交流电源的同时给定子绕组的任意二相加一直流电源,以产生静止磁场,依靠转子的惯性转动切割该静止磁场产生制动力矩的方法。

原理分析

电动机切断电源后,转子仍沿原方向惯性转动,如图五设为顺时针方向,这时给定子绕组通入直流电,产生一恒定的静止磁场,转子切割该磁场产生感生电流,用右手定则判断其方向如图示。该感生电流又受到磁场的作用产生电磁转矩,由左手定则知其方向正好与电动机的转向相反而使电动机受到制动迅速停转。

可逆运行能耗制动的控制电路:KV1、KV2分别为速度继电器KV的正、反转动作触头,接触器KM1、KM2、KM3之间互锁,防止交流电源、直流制动电源短路。停车时按下停止按钮SB3,复合按钮SB3的常闭先断开切断正常运行接触器KM1或KM2线圈,后接通KM3线圈,KM3主、辅触头闭合,交流电流经变压器T,全波整流器VC通入V、W相绕组直流电,产生恒定磁场进行制动。

RP调节直流电流的大小,从而调节制动强度。

能耗制动平稳、准确,能量消耗小,但需附加直流电源装置,设备投资较高,制动力。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


4、

电机拖动


电机拖动装置由电动机及其自动控制装置组成。自动控制装置通过对电动机起动、制动的控制,对电动机转速调节的控制,对电动机转矩的控制以及对某些物理参量按一定规律变化的控制等,可实现对机械设备的自动化控制及减少能耗。电机拖动包括卷扬机、行车、机床等。


--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

步进电机通过联轴器带动滚珠丝杠转动实现对试件的拉伸压缩

系统结构组成及工作原理电子式蠕变持久试验机主要用来完成材料拉压、蠕变、松弛、持久、周期性加载等力学试验,它主要由3个部分构成,分别为运动模块、测量模块和控制模块。运动模块主要由步进电机、联轴器、丝杠螺母以及横梁夹具等组成。其工作原理如下:步进电机通过联轴器带动滚珠丝杠转动,由丝杠螺母传动驱动横梁作直线运动,并利用夹具实现对试件的拉伸压缩。测量模块主要由位移传感器,力传感器、引伸计、放大器以及AD采集卡等构成。

步进电机多用于开环控制,但为了提高试验机精度,作者利用位移传感器对其进行位置闭环控制,用来对开环控制误差进行有效的校正与补偿。力传感器和引伸计分别用来测量拉伸过程中的作用力和变形量。

控制模块主要由上位机、电机控制卡和细分驱动器等组成。上位机将采集的数据进行实时处理后,给电机控制卡发送位置、速度和加速度指令;电机控制卡按照接收到的指令,产生相应的脉冲信号;细分驱动器依据产生的脉冲信号,使步进电机实现平稳运转。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

变频电机轴电压与轴电流的产生机理分析


3.轴承模型与轴承电流的产生由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均由一个轴承支撑,其结构如图3所示。以其中一个轴承为例,轴承的滚道由内滚道与外滚道组成,当电机转动时,轴承中的滚珠被润滑油层包围,由于润滑油的绝缘作用,轴承滚道与滚珠之间形成电容,如图3b)所示。这两个电容在转子-定子回路中以串联形式存在(为便于分析,不考虑滚珠的阻抗),可以等效成一个电容cbi,i代表轴承中的第i个滚珠。对于整个轴承而言,各个滚珠与滚道之间的电容以并联形式存在。所以整个轴承内可以等效成一个电容cb。据对轴承的分析,轴承可用一个带有内部电感和电阻的开关来等效。当滚珠未与滚道接触时,开关断开,转子电压建立;当转子电压超过油膜门槛电压时,油膜击穿开关导通,转子电压迅速内放电,在轴承内形成较大放电电流。va、vb和vc为电机三相输入电压,l’、r’和c’为输入电压耦合到转子轴的等效集中参数,cg为crf和cb并联后的等效电容。当轴承滚珠和滚道接触或者轴承内油层被击穿时,cb不存在,此时cg仅代表转子轴对机壳的耦合电容。电容cb是一个多个变量的函数:cb(q,v,t,η,λ,λ,εr)[2]。其中q代表功率,v代表油膜运动速度,t代表温度,η代表润滑剂粘性,λ代表润滑剂添加剂,λ代表油层厚度,εr代表润滑剂介电常数。轴承电容cb与定子到转子耦合电容csr,比定子到机壳耦合电容csf和转子到机壳耦合电容crf小得多。这样一来,耦合到电机轴承上的电压便不至于过大,这是因为crf与cb并联后的电容比耦合回路中与之串联的csr大得多,而串联电容回路中,电容越大承受的电压反而越小。事实上,根据分布电容的特点,很大一部分共模电流是通过定子绕组与铁芯之间的耦合电容csf传到大地去的,因此轴承电流只是共模电流的一部分。从图4可看出,形成轴承电流有两种基本途径。一是由于分布电容的存在,定子绕组和轴承形成一个电压耦合回路,当绕组输入电压为高频pwm脉冲电压时,在这个耦合回路势必产生dv/dt电流,这个电流一部分经crf传到大地,另一部分经轴承电容cb传到大地,即形成所谓的dv/dt轴承电流,其大小与输入电压以及电机内分布参数有关。二是由于轴承电容的存在,电机轴上产生轴电压,当轴电压超过轴承油层的击穿电压时,轴承内外滚道相当于短路,从而在轴承上形成很大放电电流,即所谓的电火花加工(electricdischargemachining-edm)电流。另外,当电机在转动时,如果滚珠和滚道之间有接触,同样会在轴承上形成大的edm电流。为了定量edm及dv/dt电流对轴承的影响,轴承内的电流密度十分关键。建立电流密度需估计滚珠与滚道内表面的点接触区域。根据赫兹点接触理论(hertzianpointcontacttheory),轴承电气寿命可用如下公式求得[2]:eleclife(hrs)=(7)式中,代表轴承电流密度。一般而言,dv/dt电流对轴承寿命影响很小,而由edm产生的轴承电流密度很大,使得轴承寿命大大降低。另外,空载时轴承损坏程度反而比重载时大得多,这是因为重载时轴承接触面积增大,无形中减小了轴承电流密度。

4.轴电压与轴承电流的仿真分析为进一步讨论轴承电流与pwm逆变器输出电压特性以及电机端有无过电压之间的关系,本文对dv/dt电流与edm电流两种形式的轴承电流分别进行仿真分析,结果发现,轴承电流不仅与逆变器载波频率有关,且与逆变器输出脉冲电压的上升时间有关,同时当电机端出现过电压时轴承电流明显增加。先假定电缆长度为零,根据轴承电流的存在形式可知,dv/dt电流主要是由输入跳变电压引起,因此dv/dt电流大小与逆变器载波频率和电压上升时间有关。逆变器载波频率越高,一个正弦波周期内产生的dv/dt电流数量也就越多,但此时电流幅值不变。脉冲电压上升时间是影响dv/dt电流幅值的决定性因素,另外分布电容的大小也影响dv/dt电流幅值。而edm电流产生的直接原因是轴电压的存在,因此轴电压的大小决定了edm电流幅值,轴电压的大小决定于输入电压的大小及电机内分布电容的大小。虽然逆变器载波频率和脉冲电压上升时间都会影响轴电压的形状,但轴电压的峰值与二者都没有关系,因此edm电流与二者也没有本质的联系,这是edm电流与dv/dt电流最大区别之处。当然,edm电流还与轴承油层的击穿电压有关,击穿电压越高,产生的edm电流越大。为讨论方便,假设轴承击穿电压大于或等于轴电压。

4.1改变上升时间tr仿真得到不同上升时间的轴电压与轴承电流波形如图5所示,其中图a)和b)为轴电压波形,图c)和d)为轴承电流波形,电流波形中第一次出现振荡的为edm电流,其他为dv/dt电流。由分析可知,1)tr增大轴承电流减少,包括dv/dt电流与edm电流。尤其是dv/dt电流幅值减小十分明显,但tr对edm电流的影响不大,这主要是因为edm电流由轴电压以及轴承阻抗决定;2)当tr小于一定值(约为200ns)后,dv/dt电流甚至高于edm电流;3)改变上升时间对轴电压的影响不大;4)特殊现象:轴电压在电压击穿时出现两次振荡,tr不影响第一次振荡,但影响第二次振荡,且第二次振荡随着tr的上升而减少,其原因是轴承短路后定子绕组到转子的耦合路径依然存在,所以出现一个dv/dt电流振荡。

4.2改变耦合参数及轴承参数定子绕组对转子的耦合电容越大,轴电压越高,dv/dt电流与edm电流均增加;轴承电容减小,dv/dt电流减小;但edm电流基本不变,此时轴电压上升。其原因是:在共模电路中,轴电压是由定子绕组对转子铁心的电压耦合造成的,维持这一电压的存在靠轴承电容以及转子对机壳耦合电容。由于后两者并联,再与前者串联,因此轴电压按电容值进行分配,电容越大压降越小。一般情况下,轴承电容与转子对机壳耦合电容比定子绕组对转子耦合电容大得多。在只改变轴承电容的情况下,轴承电容越小,整个并联电容等效值下降,轴电压反而上升,由于轴承上的dv/dt电流与容抗及dv/dt成正比,在dv/dt不变时,容抗减小,dv/dt电流下降。仿真结果如图6所示。

5.抑制办法从前面的理论研究和仿真分析可以看出,电机轴承电流产生的一个主要原因是逆变器输出的高频脉冲具有过高的dv/dt前后沿,由此可知,抑制轴承电流的有效办法就是降低逆变器输出电压的dv/dt。但是,逆变器本身输出的脉冲电压上升时间是由功率器件的开关特性决定的,因此只能在逆变器输出端附加装置改变其输出电压的dv/dt。降低逆变器输出电压上升沿dv/dt的一个最直接的办法是在逆变器输出端串上大的电抗器,即可构成所谓的“正弦波滤波器”,逆变器输出的脉冲电压在经过大电抗器后成为完全的正弦波电压,这样便可以消除轴电压与轴承电流。但是这种办法的代价是电抗器的功率损耗大,体积大,造价高,在普通的变频调速系统中应用不是很合适。本文采用折中办法,在逆变器输出端串接电感值不大的电感以抑制电流的快速变化,同时在输出端线间设置rc电抗以吸收输出电压的高次谐波,这样可以适当降低输出脉冲电压上升沿的dv/dt值,达到抑制轴承电流的目的。逆变输出滤波器降低了电机输入脉冲电压的电压上升率,这样一来,电机内分布电容的电压耦合作用便会大大减弱,轴电压以及由此引起的edm电流都会下降,同时由于电压变化率引起的dv/dt电流也会明显减少,因此滤波器可以有效地抑制轴承电流的产生。图8给出了加入滤波器(未接地)前后的电机轴承电流仿真波形,其中,逆变器载波频率为5khz,脉冲电压上升时间为200ns,电缆长100m。从图中可以看出,无论edm电流还是dv/dt电流都明显减少。仿真中还发现,将滤波器接地,无论dv/dt电流还是edm电流相对不接地而言均显着减少,其原因是rc吸收高次谐波的作用更强,能够更好地改善电压波形。

6.在高频pwm脉冲输入下,电机内分布电容的电压耦合作用构成系统共模回路,从而引起轴电压与轴承电流问题。轴承电流主要以三种方式存在:dv/dt电流、edm电流和环路电流。轴电压的大小不仅与电机内各部分耦合电容参数有关,且与脉冲电压上升时间和幅值有关。本文着重讨论前两种方式的轴承电流。dv/dt电流主要与pwm的上升时间tr有关,tr越小dv/dt电流的幅值越大。逆变器载波频率越高,轴承电流中的dv/dt电流成分越多。edm电流出现存在一定的偶然性,只有当轴承润滑油层被击穿或者轴承内部发生接触才可能出现,其幅值主要取决于轴电压的大小。以降低脉冲电压上升率为原则,设计一种在逆变器输出端串小电感并辅以rc吸收网络达到抑制轴电压与轴承电流的目的,仿真结果验证了该方法的有效性。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

鼠笼式交流异步电动机起动技术

1引言

三相鼠笼式交流异步电动机因其结构简单,性能稳定及无需维护等特点,在各个行业中得到了广泛的应用,但由于其在起动过程中会产生过大的起动电流,会对电网和其他用电设备造成冲击,受电网容量限制和保护其他用电设备正常工作的需要,要在电机起动过程中采取必要的措施。总的来说,在不需要调速的场合,考虑经济的因素,异步电动机的起动可以有两种方法:直接起动和降压起动。

2直接起动

直接起动也就是全压起动,起动方法简单,但交流异步电动机的起动电流大,可达到额定电流的4~7倍,对于国产电动机的实际测量,某些笼形异步电动机甚至可达到8~12倍。过大的起动电流会造成电动机发热,影响电动机寿命;电动机绕组(特别是端部)在电动力作用下,会发生变形造成短路而烧坏电动机;过大电流会使线路压降增大,造成电网电压下降而影响到同一电网的其他用电设备的工作。所以,一般情况下规定,异步电动机的功率低于7.5kw时允许直接起动,如果功率大于7.5kw,在条件不允许的情况下,就需要采用其他方法进行起动。

3降压起动

3.1电阻降压起动

起动原理图如图1所示。q1和q2为接触器;r为起动电阻。

(1)简介

电阻降压起动就是通常所说的定子串电阻起动。在定子电路串联电阻,起动时电流会在电阻上产生压降,降低了电动机定子绕组上的电压,起动电流也从而得到减小。起动时,q1闭合,q2断开,起动完成后,闭合q2。

(2)优点

起动平稳,运行可靠,结构简单,如果采用电阻降压起动,在起动阶段功率因数较高。

(3)缺点

由于起动转矩和定子电压的平方成正比,所以起动时电压降低将造成起动转矩减小,适用于轻载和不频繁起动的场合;起动时电能损耗大,起动成本高。

3.2自耦变压器降压起动

起动原理图如图2所示,q1和q2为接触器。

(1)简介

自耦变压器降压起动利用自耦变压器降低加到电动机定子绕组的电压,以减小起动电流。自耦降压起动的起动电流参照式(1),起动电压参照式(2),起动转矩参照式(3)。

式中,i1为自耦变压器原边电流,即使用自耦变压器时的电机起动电流;

ist为电机直起时的起动电流;ux为自耦变压器起动时的起动电压;t为自耦变压器起动时的起动转矩;tst为电机直起时的起动转矩;w2、w1分别为自耦变压器副边和原边匝数。

为满足不同负载要求,自耦变压器的二次绕组一般有三个抽头分别为电源电压的40%、60%、80%(55%、64%、73%)。

(2)优点

三个电压抽头适合不同负载起动时选择;可以适用于较大容量电动机;

(3)缺点

体积大,质量大,价格高,需要维护检修。

3.3星-三角起动

起动原理图如图3所示,q1和q2为接触器。

(1)简介

星-三角起动要求电机每个绕组有两个出线端,共6个出线端。起动时接成星形,起动完成后必须为三角形。起动时连接成星形的定子绕组电压与电流只有三角形连接时的1/1.732。连接成星形起动时的线电流只有连接成三角形直接起动线电流的1/3;起动转矩和电压平方成正比,因此也是直接起动转矩的1/3。

(2)优点

体积小,重量轻,运行可靠,检修方便。

(3)缺点

只适用于正常运行时接成三角形的电动机;只适用于轻载或空载起动;起动电压是定值,不能根据负载调整。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

电机拖动中变频调速系统的常见故障及排除措施

电机是一种实现电能量转换的电磁装置,包括电动机和发电机。电机拖动是指由原动机带动生产机械运动,以电动机作为原动机并且按照人们通常给定的规律带动生产机械的运转,就称为电机拖动。电机拖动系统是用电动机来拖动机械运行的系统。

随着计算机和电子技术的发展,PLC、变频器等自动化产品在电机拖动领域得到了广泛应用。电机拖动中采用PLC-变频器调速在近几年得到了推广和普及。随着变频器使用的普及,在日常工作中会经常遇到变频器报警跳闸等故障情况,为了更好地使用变频器,减少设备停机时间,本文总结了一些变频器常见故障及排除措施。

1.变频调速系统的优点

调速范围宽,可实现有精确控制;软启动、软停止的功能降低了机械传动冲击;组件高度集成以及采用可靠性高的低压电器,有效解降低设备故障率,而且容易维护。提高了系统的功率因数和工作效率而且有明显的节能效果。

2.变频器对工作环境的要求

变频器的工作电源电压应相对稳定,环境温度为-10℃~45℃,湿度应在95%RH以下、无腐蚀性气体和导电尘埃等清洁干净的场所。当变频器在电源电压波动幅度大和潮湿高温多尘的恶劣环境下工作时,容易出现过压、欠压、过流、短路等故障。

3.常见故障及排除措施

3.1过电流、过载

一般是由于变频器的输出电流超过过电流检测值(约为额定电流的200%)、变频器的输出电流超过电机或变频器的额定负载能力(约为额定值的160%)。应检查输入三相电源是否出现缺相或不平衡、电机接线端子(U、V、W)电路之间有无相间短路或对地短路;检查电机和编码器电缆及相序是否正确;检查电机功率是否匹配、在电机电缆上是否含有功率因数校正电容或浪涌吸收装置、变频器输出侧安装的电磁开关是否误动作;检查变频器的加速时间以及变频器的参数设定是否正确。

3.2过电压

一般是由于变频器的中间电路直流电压高于过电压的极限值。应检查电源电压是否在规定范围内、变频器的减速时间是否设置过短,如过短,延长减速时间;是否正确使用制动单元、降低负载惯量或放大变频器容量。

3.3欠电压

一般是由于变频器的中间电路直流电压低于欠电压的极限值。检查电源电压是否在规定范围内、电源是否存在停电、瞬间停电、主电路器件故障、接触不良等情况、供电变压器容量是否合适、系统中是否存在大启动电流的负载。

3.4接地故障

一般是由于变频器输出侧的接地电流,超出变频器的整定值。检查电机和电机电缆的对地绝缘是否正常。

3.5输入电源缺相

一般是由于变频器直流环节电压波动太大输入电源缺相。检查变频器的供电电压是否缺相、输入三相电源电压不平衡度是否超过4%、负载波动是否过大、变频器的三相输入电流是否平衡。

3.6输出缺相

一般是由于变频器检测输出某相无输出电流,而另两相有电流。检查电机、变频器和电机之间的接线;检查变频器三相输出电压是否平衡。

3.7过热故障

一般是由于变频器的散热器温度,超出变频器的整定值。检查环境温度是否超过标准;检查变频器的散热风机工作是否正常,散热风道有无堵塞;检查变频器散热器的温度显示值。

3.8整流模块损坏

一般是由于电网电压或内部短路引起的,在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有影响的设备等。

3.9逆变模块损坏

一般是由于电缆或电机损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。在确定无任何故障下,运行变频器。

3.10上电无显示

一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,也有可能是面板损坏。

4.日常维护检查应注意事项

变频器上电之前应先检测周围环境的温度及湿度,温度过高会导致变频器过热报警,严重时会直接导致电路短路、变频器功率器件损坏;空气湿度过大会导致变频器内部直接短路。在变频器运行时要注意其冷却系统工作是否正常:风道排风是否流畅,风机是否有异常噪音。IP20以上的变频器可直接敞开安装,IP20以下的变频器一般应采用柜式安装,变频柜散热效果好坏将直接影响变频器的正常运行。保护柜尽可能安装在周围温度不易上升的地方;保护柜应通风、防尘、防雨性能良好;频器在柜内应该纵向安装,而且上下、左右方向应留有足够的空间,方便变频器通风散热;柜内应安装温湿度传感器、散热风扇、加热除湿装置;经常检查进风口是否有灰尘及阻塞物,变频器的排风系统如风扇旋转是否流畅都是我们日常检查不可忽略的地方。电动机变压器、电抗器等是否过热以及有异味;变频器和马达是否有异常响声;变频器面板电流显示是否偏大或电流变化幅度太大,输出UVW三相电压与电流是否平衡等。

变频器由多种部件组成,有些部件在长期工作后其性能会逐渐降低、老化,这也是变频器发生故障的主要原因,为了保证设备长期的正常运转,冷却风扇以及滤波电容应定期进行更换。

4.1冷却风扇的更换

变频器的功率模块是发热最严重的器件,其连续工作所产生的热量必须要及时排出,一般风扇的寿命大约为10kh~40kh。按变频器连续运行折算为2~3年就要更换一次风扇,直接冷却风扇有二线和三线之分,二线风扇其中一线为正极,另一线为负线,更换时应注意不要接错;三线风扇除了正、负极外还有一根检测线,安装错误的话会引起变频器过热报警。

4.2滤波电容的更换

中间直流回路滤波电容:又称电解电容,其主要作用就是平滑直流电压,吸收直流中的低频谐波,它的连续工作产生的热量加上变频器本身产生的热量都会加快其电解液的干涸,直接影响其容量的大小。正常情况下电容的使用寿命为5年。建议每年定期检查电容容量一次,一般其容量减少20%以上应更换。

5.定期保养应注意事项

应至少一年进行一次定期检查。检查螺丝钉、螺栓和即插件等是否松动。定期清扫空气过滤器冷却风道及内部灰尘。相间电阻以及输入输出电抗器的对地是否有短路现象,必要时应用绝缘电阻测试仪进行测量,正常应大于几十兆欧。在条件允许的情况下,要用示波器测量开关电源输出各电路电压的平稳性,如:5V、12V、15V、24V等电压。U、V、W相间波形是否为正弦波。导体和绝缘体是否有腐蚀现象,如果有的话要及时用酒精擦拭干净。测量驱动器电路各路波形的方法是否有畸变。接触器的触点是否有打火痕迹,严重的要更换同型号或大于原容量的新品。确认保护显示回路无异常;确认控制电压的正确性,进行顺序保护动作试验;确认变频器在单独运行时输出电压的平衡度。

6.结束语

在电机拖动中选择适合的变频器,合理运用变频调速技术总结并且对容易出现问题的地方定期进行维修和保养工作,及时更换易损件可以保证变频器正常运行减少故障。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

电力拖动的虚拟实验技术探讨

随着社会经济的发展,以及人们素质的普遍提高,社会对人们的要求也日益提高。但是由于种种方面的限制,诸如资金的不足,实践活动的缺乏等种种因素,导致实际操作能力与创新能力缺乏。而虚拟实验技术的引用能够大大缓解以上种种因素的限制。具体到电力拖动的虚拟实验技术当中,MATLAB等软件的运用,成为了虚拟实验开发与创新技术培养的全新方式。

1虚拟实验

1.1概述

虚拟实验是在计算机仿真基础上发展起来的一项应用技术。利用计算机的强大功能可虚拟仿真实际的物理系统。众多计算机仿真软件的不断被研发出来,并应用于科研技术设计之中,做出了极为巨大的贡献。PISPCE和MATLAB是当今较为常见的计算机仿真软件,其中MATLAB是虚拟实验的主要开发软件。

1.2优势

在如今大多电机课程实验设备条件下,运用直流电机作为调速对象,仅仅只能开出直流调速系统实验。传统实验虽然拥有众多优势,但是劣势也显而易见,诸如体积巨大,维护繁琐,故障频出,购置需要大量资金等。同时在培养方面也具有巨大局限,如容纳人数的数量方面受到限制,对实验计划和方案制定会提出很高的要求,容错率很低,难以满足人才培养的需求。因此,由于传统实验存在的种种不足,衬托出了虚拟实验多种优势。基于计算机平台上的虚拟实验技术将以上劣势化为优势,对仪器和设备几乎没有需求,同时节省资金和空间。

2具体运用

通过在计算机外接设备上的点击与拖动,将虚拟的各种仪器,按实验的目标与步骤整合成一个完整实验系统的过程,就是虚拟实验。而实验条件的变动,数据的收集汇总,实验结果的分析归纳三个方面全部完成,才意味着整个实验的达成。本文以带有RLC滤波器的交流电机变频调速实验作为实例,实验中包括电机、电力电子、驱动控制三个方面,分析虚拟实验的强大作用,并与传统实验进行比较。

2.1模型的建立

将电压源型逆变器、电动机主回路以及RLC滤波器通过使用MATLAB中PSB库中的元件模型完成建立。一般出现超过功率变换电路的情况,并产生多环节控制,多信号反馈,多非线性环节的特征,说明控制电路规模较大,需要大量运用集成电路。但是,基于对电路的控制,其输入输出特性是我们研究所要了解的主要目标,而其内部的电压与电流则是可有可无的旁枝末节,导致无法使用虚拟实验来进行电路的控制。所以想要实现仿真的方式,可以通过SIMULINK数学函数进行SPWM的调制电路模型的驱动控制。而右图即为所示。

2.2模型参数的构建

通过鼠标对元件图标的点击,在出现的参数设置对话框输入诸如电机的额定电压、功率、频率、转动惯量和定转子数据等各种必要参数。通过滤波效果进行滤波器的RLC参数的设计与运算。在接收变频调速的恒压频比所产生的调制信号之后,通过SPWM调制和驱动模块内部函数的计算,再与设计的三角载波进行比较。

2.3设置仿真模型

设置仿真参数是在仿真模型开始之前必须完成的步骤。包括对开始与终止的时间、步长以及解电路运算方式等仿真类型和相对与绝对的误差等方面进行设置。较快模拟速度的得出需要使用如ode23tb、ode15s这样的刚性系统的参数运算方式。同时,MATLAB软件参数锁设定的虚拟时间与现实的时间并不一致,只是一种对于时间流逝的表现手段。若是缩小步长,则会造成采样点数的增加,使得现实中的执行时间变长。

2.4实验成果观测验证参数设计以及电路结构是否合理,是虚拟实验的主要目标。而上述实验能够经过观测器观测电机速度的变化方式与电压的波形,并依靠给定频率的大小,在进行理论的分析之后,对结果的正确性进行判断。而下面两图中的前者是电机转速的变化图,后者则是在固定的载波频率与固定的调制频率之下的逆变器输出线电压幅度频谱。两张图示将谐波各次的大小、总谐波的有效值和基波有效值三个方面十分明了的展示出来。由于电机的运行效率和机器寿命受到谐波的影响,因此,为了减少电机受高次谐波损害,将RLC滤波器安装于电机与逆变器的中间成为了有效的解决方法。总谐波畸变率在经过RLC参数的设计与电机端电压频谱的观测之后可以保持在10%之下。

2.5实验结果总结

由上面的实验可以得知,作为旋转机械的电机设备,作为是大功率电力开关的逆变器设备等传统实验设备,存在损耗高、构建繁琐、危险性强、价格昂贵等种种弊端。因而既可以对已有系统展开研究又能对处于构想中的设备进行探索,虚拟实验展现了极为显着的优越性。比如上述实验中,在模型库中虽然并不存在满足观测要求的频谱分析仪,但是在运用MATLAB函数展开构建之后,使不可能成为了可能。而虚拟实验的自定义、自主性强的特点,成为了其另一个巨大的优势。同时,虚拟实验具有良好的通用性、与其他系统开展数据交换的便利性以及升级与扩展的成长性,使其在实验数据的分析处理方面显得极为高效迅速。

3结束语

虚拟实验的优越性,通过上文的分析与具体的实验体现的淋漓尽致。但是,十全十美的系统终归是不存在的,虚拟实验尽管在各个方面上都具有显着的优势,然而也无法取代传统实验。建立极为准确的数学模型,始终是虚拟实验仿真技术中的一个难关,各种限制会使之与实际情况产生差异,这也是传统实验存在的必要性体现。因此,只有现实实验与虚拟实验相互配合,才会使电力拖动等电子电路设计技术得以真正的进步与发展。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接