工业伺服节能改造,关于工厂电气节能发展趋势信息聚合页,专注于工厂电气节能发展趋势:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能

注塑机伺服节能改造

  注塑机工作原理  原定量泵(多为叶片泵)+ 异步(鼠笼式)电机的运行中,马达高速恒定持续运转,使油泵100%输出,当动作的速度越慢、动作的 时间越长、压力越大,潜在节能的幅度

6772018-06-28 09:34:30

查看详情

铝型材挤压机节能改造方案

一、项目总述某铝型材公司作为铝型材行业的领军者、企业管理的先驱者,在响应国家节能减排号召、开展能效管理工作方面拥有良好的管理基础和实施条件。本报告结合该公司的管理

2912018-06-25 14:35:10

查看详情

液压站伺服节能改造

液压站伺服节能改造 液压站工作原理电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后

2322018-06-28 09:31:14

查看详情

油压机节电节能改造方案

第一章 油压机现状介绍 1.1 原机台配置情况 贵司现有油压机47台,进行配置,改造前机台具体配置如下: 品牌 吨位 T 数量 台 电机功率 电机转速 油泵排量 系统流

2252018-06-25 14:13:47

查看详情

工厂节能降耗措施有哪些?

工厂节能降耗措施有哪些?徕卡节能电气,专业从事工业节能15年,在工业节能方面,主要对生产车间内大型液压油压设备做伺服系统节能改造。工厂的节能降耗项目,节能改造

2202018-08-03 13:06:08

查看详情

为什么注塑机伺服节能改造要比其他节能方式节电率要高?

为什么注塑机伺服节能改造要比其他节能方式节电率要高?注塑机节能改造的方法有很多,其中主流方式为:将原系统改造为伺服控制系统。为什么伺服控制系统要比其

2192018-08-15 17:00:09

查看详情

压铸机节能改造方案

第一章 压铸机现状介绍1.1 原机台配置情况现有压铸机20台进行配置,改造前机台具体配置如下: 品牌 型号 数量 油泵型号 电机转速 RMP 电机功

2122018-06-25 13:52:35

查看详情

空压机节能改造

  空压机节能改造  对空压机节能的改造方式主要有以下两种  1.变频调速方式  采取变频调速方式来降低空压机电动机的轴功率输出。改造之前,空压机的压力达到设定压力

1952018-06-25 16:42:26

查看详情

油压机伺服节能改造

  油压机伺服节能改造  油压机工作原理  电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、

1862018-06-25 16:26:02

查看详情

注塑机料筒节能改造

  注塑机料筒节能改造  注塑机料筒节能通过注塑机干燥机高效节能系统进行节能。  该干燥机高效节能系统是将干燥机排出的热风,经高效节能转换系统,吸收热量排出湿气粉尘

1792018-06-29 16:22:33

查看详情

注塑机节能改造方案

某磨具企业,注塑机节能改造方案

1632018-06-25 13:43:47

查看详情

工业空压机与锅炉怎样配合进行节能改造?

  随着社会发展,对能源需求剧增,为了进一步推进科学发展,减排降耗节能改造迫在眉睫。  企业内部空压机基本24小时持续运行供气,对企业能源消耗"做出重大贡献",如果空压机能

1362019-02-22 09:49:45

查看详情

空压机热回收项目节能改造

空压机热回收项目 内容 节能效果 备注 采暖 热水 产热水量(50℃升至60℃) 388吨/天 10℃温差 满足采暖面积

1252018-06-25 14:27:06

查看详情

徕卡节能发展自身技术优势,快速布局节能行业

  徕卡节能:加速节能产业高端化布局  继信息消费、光伏产业、基础设施建设投资之后,发展节能环保产业俨然成为了新一届政府稳增长组合拳中一支有生力量。2013年8月,国务院

1212019-02-20 16:03:03

查看详情

专访苏州徕卡节能电气技术有限公司副总倪春林

  专访苏州徕卡节能电气技术有限公司副总倪春林  前言  有一句话说得非常好,没有传统的行业,只有传统的企业。这两个月,当我们的编辑团队深入近30家企业采访交流时,不论采

1202019-02-12 14:07:42

查看详情

注塑机如何实现30%~80%节电率的节能改造

注塑机做节能改造,首选推荐“伺服控制系统”的节能改造。 注塑机,典型的周期性动作、变动负荷的生产设备。其一套完成的生产周期为“锁模、射胶、溶

1192018-08-21 14:28:55

查看详情

空压机余热回收节能改造

  空压机余热回收节能改造  空压机余热回收是一项非常环保的节能方式。空压机余热回收是将空压机的高温油经过热交换等技术处理把热量传递到冷水中,冷水被加热后流到保温

1152018-06-25 16:44:55

查看详情

工业节能与大数据相结合,为节能事业发展指明方向

  徕卡节能:未来工业节能与大数据结合为发展方向   (徕卡节能大数据技术能源管理系统示意图)  节能减排作为我国当前重点发展产业,发展好坏事关我国当前“调结构,稳

1142019-02-18 11:28:11

查看详情

注塑机伺服节能改造的原理大揭秘

  注塑机伺服节能改造的原理大揭秘   注塑机通过徕卡节能设备产品改造之后,正常节电率在:30%-80%  那注塑机节能改造,其改造原理是什么?  注塑机节能改造后的设备,系统

1052018-06-26 14:49:16

查看详情

中央空调节能改造

    中央空调工作原理  一般来说,中央空调系统的大负载能力是按照天气热、负荷大的条件来设计,但实际上系统极少在这些极限条件下工作。根据有关资料统计,空调设备95%的

1022018-06-25 16:35:37

查看详情

节能节电行业乘风破浪前行者:徕卡节能电气

  徕卡节能:节电产业是最具发展潜质的朝阳产业  中国的节电市场是一个沉睡的市场,据不完全统计,它具有万亿的巨大市场份额,谁能唤醒这个市场,谁就将获得无法估量的回报。据美

1002019-02-20 10:01:28

查看详情

水泵节能改造

  水泵节能改造  离心泵节能方式有三种:  A. 水泵变频调速节能(比较常见)  B. 水泵叶轮改造节能(比较少)  C. 更换电机和水泵节电(减少水管阻力和选择合理扬程、流

992018-06-25 16:40:45

查看详情

注塑机节能改造,一般都在哪些部位做节能改造

  注塑机节能改造,一般都在哪些部位做节能改造?   现在主流做注塑机节能改造的,一般改的部位在:电机、油泵、干燥机,加热部位的加热圈节能。   注塑机动力部位伺服节能

972018-08-03 14:33:41

查看详情

液压系统运行状况分析,如何进行节能改造

    液压系统主要应用场景:  在钢厂、铝型材厂家、注塑厂家、汽车配件(四门一盖、汽车外壳等部件)五金冶金类行业广泛应用液压系统。  主要体现设备有:注塑机、压铸机

952018-12-21 10:19:21

查看详情

循环冷却水节能改造

循环冷却水节能改造   产品概述  循环水智能控制系统内含四大功能模块:  1. 带气候补偿的人工智能控制系统  2. “风”“水”平衡系统  3. 水

932018-06-25 16:38:25

查看详情

钢铁冶金行业节能改造工程项目

  钢铁冶金行业常用设备有不同类型的液压站,针对液压站进行伺服节能改造,节能降耗效果明显。  大型液压站一般使用行业为:冶金、有色金属加工、矿山、港口、石油化工及风力

912018-06-25 15:14:08

查看详情

注塑机做节能改造,一般都用什么节能方案?

  注塑机做节能改造,一般都用什么节能方案?  一、注塑机节能改造,目前主流的节能改造方式是:  1、液压动力系统进行伺服系统节能改造。  2、干燥筒的节能改造,余热回收

912018-08-03 14:07:08

查看详情

循环水节能优化系统

  循环水节能优化系统  循环水节能优化工作原理:  循环水节能优化系统采用国内先进的控制系统,对循环水系统进行优化控制。主要利用智能控制系统对运行设备进行控制,控制

882018-11-13 10:16:35

查看详情

企业推进注塑机伺服节能改造,想知道注塑机在什么工作阶段最省电节能?

  企业推进注塑机伺服节能改造,想知道注塑机在什么工作阶段最省电节能?   一般注塑机在注塑成型“保压”以及产品“冷却”的过程中,异步电机都是在

862018-08-09 17:01:30

查看详情

关于公示苏州工业园区2017年度重点用能企业节能降耗低碳目标责任考核结果的通知

  关于公示苏州工业园区2017年度重点用能企业节能降耗低碳目标责任考核结果的通知  根据《苏州工业园区重点用能单位节能降耗低碳发展目标责任考核方案》(苏园经〔2016

832018-07-24 10:06:03

查看详情
节能改造关注问答
1、

高压电机启动方式

电机容量小于电源容量且1000KW以下的可直接启动,这时的冲击电流是额定值的3-6倍(当然同步电机的直接启动指的是同低压的一样,先异后同等方法)。为了防止冲击电流过大,对于大电机必须考虑减少启动电流的启动方式:有串电抗启动,变频启动,液力偶合器启动等多种方式。有复杂有简单。

高压电机要实现调速,主要采用三种方式:

(1)液力耦合器方式。即在电机和负载之间串入一个液力耦合装置,通过液面的高低调节电机和负载之间耦合力的大小,实现负载的速度调节;

(2)串级调速。串级调速必须采用绕线式异步电动机,将转子绕组的一部分能量通过整流、逆变再送回到电网,这样相当于调节了转子的内阻,从而改变了电动机的滑差;由于转子的电压和电网的电压一般不相等,所以向电网逆变需要一台变压器,为了节省这台变压器,现在国内市场应用中普遍采用内馈电机的形式,即在定子上再做一个三相的辅助绕组,专门接受转子的反馈能量,辅助绕组也参与做功,这样主绕组从电网吸收的能量就会减少,达到调速节能的目的。

(3)高低方式。由于当时高压变频技术没有解决,就采用一台变压器,先把电网电压降低,然后采用一台低压的变频器实现变频;对于电机,则有两种办法,一种办法是采用低压电机;另一种办法,则是继续采用原来的高压电机,需要在变频器和电机之间增加一台升压变压器。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

发电厂风机电动机节能改造技术方案分析

目前,在我国电源结构中,火电装机容量占74%,发电量占80%;水电装机容量占25%,发电量占19%;核电仅占1%左右,因此火电机组及其辅机设备的节能改造工作是非常重要的。火电厂中的各类辅机设备中,风机水泵类设备占了绝大部分,蕴藏着巨大的节能潜力。由于火电机组调峰力度的加大,这些机组的负荷变化范围很大,必须实时调节风机水泵的流量。目前调节流量的方式多为节流阀调节,由于这种调节方式仅仅是改变了通道的通流阻抗,而电动机的输出功率并没有多大改变,所以浪费了大量的能源。随着电力行业的改革不断深化,厂网分家,竞价上网政策的逐步实施,降低厂用电率,降低发电成本,提高上网电价的竞争力,已成为各火电厂努力追求的经济目标,要求越来越迫切。风机水泵类负载采用调速驱动具有非常可观的节能效果,这已是共识。

另外,交流电机的直接起动(尤其是高压电机)会产生巨大的电流冲击和转矩冲击,在很短的起动过程中,转子笼型绕组及阻尼绕组将承受很高的热应力和机械应力,致使笼条的端环断裂。直接起动时的大电流还会在定子绕组的端部产生很大的电磁力,使绕组端部振动和变形,造成定子绕组绝缘的机械损伤和磨损,从而导致定子绕组绝缘击穿。直接起动时的大电流还会引起铁芯振动,使铁芯松驰,引起电机发热增加。在火力发电厂中,高压大容量交流笼型异步电动机的使用非常广泛,由于直接起动而造成的电动机烧毁和转子断条事故屡屡发生,给机组的安全经济运行造成很大的威胁。因此大容量异步电动机采用软起动方式,对于延长电动机的使用寿命,减少对电网的冲击,保证机组正常运行是非常必要的。由于电动机的变频软起动可提供高的起动转矩并可做到平滑无冲击,所以采用变频器实现软起动的效果也是非常突击的。同时,采用调速驱动,还可以有效地减轻风机水泵叶轮的磨损,延长设备使用寿命,降低运行噪声。还有运行工艺对辅机设备的控制性能的改善也是十分迫切的,例如锅炉风机和给粉机的调速控制,可以大幅度地改善炉内的燃烧工况,从而节煤、节水,并可节省这些物料的运输,处理能量等。工艺条件的改善可以创造巨大的经济效益,已不再简单地局限在节能的范畴,人们会很快地认识到这一点,并迅速行动起来。本文针对发电厂各种风机电动机的实际运行工况,逐一地进行节能改造方案分析。

风机是火力发电厂重要的辅助设备之一,锅炉的四大风机(送风机、引风机、一次风机或排粉风机和烟气再循环风机)的总耗电量约占机组发电量的2%左右。随着火电机组容量的增大,电站锅炉风机的容量也在不断增大,如国产200MW机组,风机的总功率达7140kW(其中,送风机二台2500kW,引风机二台3200kW,排粉风机总功率1440kW),占机组容量的3%以上。因此,提高风机的运行效率对降低厂用电率具有重要的作用。

风机的运行状况和节能效果我国电站风机已普遍采用了高效离心风机,但实际运行效率并不高,其主要原因之一是风机的调速性能差,二是运行点远离风机的最高效率点。我国现行的火电设计规程SDJ-79规定,燃煤锅炉的送、引风机的风量裕度分别为5%和5%~10%,风压裕度分别为10%和10%~15%。这是因为在设计过程中,很难准确地计算出管网的阻力,并考虑到长期运行过程中可能发生的各种问题,通常总是把系统的最大风量和风压富裕量作为选择风机型号的设计值。但风机的型号和系列是有限的,往往在选用不到合适的风机型号时,只好往大机号上靠。这样,电站锅炉送、引风机的风量和风压富裕度达20%~30%是比较常见的。

电站锅炉风机的风量与风压的富裕度以及机组的调峰运行导致风机的运行工况点与设计高效点相偏离,从而使风机的运行效率大幅度下降。一般情况下,采用调节门调节的风机,在两者偏离10%时,效率下降8%左右;偏离20%时,效率下降20%左右;而偏离30%时,效率则下降30%以上,对于采用调节门调节风量的风机,这是一个固有的不可避免的问题。可见,锅炉送、引风机的用电量中,很大一部分是因风机的型号与管网系统的参数不匹配及调节方式不当而被调节门消耗掉的。因此,改进离心风机的调节方式是提高风机效率,降低风机耗电量的最有效途径。

按照流体机械的相似定律,风机、水泵的流量Q、压头(扬程)H、轴功率P与转速n之间有如下比例关系:

离心式风机在变速调节的过程中,如果不考虑管道系统阻力R的影响,且风压H随流量Q成平方规律变化,则风机的效率可在一定的范围内保持最高效率不变(只有在负荷率低于80%时才略有下降)。图1示出了离心式风机不同调节方式耗电特性比较,图2示出了采用调节门调节和转速调节方式时,风机的效率-流量曲线。由图2可知:在风机的风量由100%下降到50%时,变速调节与风门调节方式相比,风机的效率平均高出30%以上。因而,从节能的观点看,变速调节方式为最佳调节方式。

风机调速节能改造方案分析对于常年带满负荷的机组,当风机的风量裕度在30%时,选用双速电机最为经济,即使在满负荷连续运行工况下,电机也可在低速档运行,已可满足风量要求;当风量余度在20%左右时,则采用变频调速、串级调度较为经济,而采用双速电机和液力耦合器不能起到节电作用;当风量裕度在10%左右时,采用双速电机和液力耦合器调速还不及调节门调节的经济性好,而采用变频调速和串级调速与调节门调节的经济性相差不大,因而此时只要采用调节门调节即可,不必采用变速调节。

对于调峰机组和长期处于低负荷运行的机组,考虑到长期运行的安全可靠性、经济性和操作维护工作量等,变频调速和串级调速比双速电机及液力耦合器等调速方式具有更大的优越性。因此,电厂在风机节能改造时,应优先选择变频调速和串级调速方案。风机的功率一般在1000~2000kW,在目前的功率器件耐压条件下,采用高压IGBT和IGCT的三电平中压变频器,是目前的最佳选择方案。这种变频器的功率器件不串不并,可靠性最高,逆变单元采用12只HV-IGBT或IGCT,使用的功率器件最少,成本最低,体积最小。输入采用12脉冲整流器,网侧谐波小;输出采用LC滤波器,电流波形好,总的谐波畸变率THD<1%,适合于任何笼型异步电机,且不必"降额"使用。输出电压等级有2.3kV,3.3kV和4.16kV,对于我国的6kV电机,可将电机进行Y/△改接,线电压为3.47kV,考虑风机一般均有设计余量,因此采用3.3kV的变频器,完全能满足要求。对于老设备的改造特别有利,是目前最为经济合理的改造方案。ABB公司的ACS1000和西门子公司的SIMOVERTMV属这类变频器。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

受转速影响导致器具受的总扭矩M不能保持恒定

由于切割元件的存在,方式三与方式一存在相似的问题。在U额定时工具上的额定扭矩M其实有两部分:切割元件的转矩M1和测功机的扭矩M2,仪表显示的即M2。电压变化时M2保持不变,而M1的大小受转速影响导致器具受的总扭矩M不能保持恒定。导致了测试到的效率比实际效率偏低。对于额定扭矩本身就很小的器具,扭矩的微小变化便会引起测量结果的较大差别。所以方式三仍不符合标准要求。正常工作时的运动部件,如砂轮片等具有散热功能,如果试验过程中不安装会导致温升增加,故试验时应安装类似部件,以模拟实际工况。

砂轮片部件被认为是没有旋转不平衡量的,否则一方面加载扭矩不恒定,另一方面由于不平衡引起的转矩变化对温升的影响会抵消甚至远大于其散热对温升的影响。对手持式割草机温升测试结果有影响的,不仅是器具本身,试验过程中的各种不当因素也会造成试验结果的不准确,其中以加载方式的影响尤为明显。

在温升测试中,根据实际情况决定是否安装正常工作需带的旋转部件时,应首先保证部件的不平衡量不会影响到加载扭矩的恒定保持。对手持式割草机温升测试,切割元件和带切割元件同时连测功机的加载方式均不宜采用。仅连测功机的加载方式是符合标准要求的,当对试验结果有疑义时,应以此为准。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


4、

电动机直接启动严重影响电动机的绝缘性能和使用寿命


风机运行中实际风量仅为额定风量的一部分,风机远离额定工作点运行,其实际运行效率很低,能耗浪费问题严重。由于挡板的存在,挡板前后存在压差,消耗了很大一部分能量,同时加大了对管道和风机的磨损。采用人工方式来调节挡板,操作麻烦,实时性差。电动机直接启动,启动电流为额定电流的6~8倍,严重影响电动机的绝缘性能和使用寿命,并会对电网造成较大冲击。电动机运行功率因数最高为0.8,功率因数低,无功损耗大。

技术改造节能原理项目通过技术改造,新增高、低压变频器系统,以调节电动机运行频率(转速)的方式替代了原有的调节风门的运行方式,从而起到节省电能、提高功率因数、改善运行工艺的作用。从风机的运行曲线图来分析采用变频调速后的节能效果。

项目技术改造方案通过新增的高压变频器系统与低压变频器系统,使风机可以在变频运行状态和工频运行状态间进行切换,即使在变频器发生故障时也不会影响风机的运行,保证不因增加高压变频器系统与低压变频器系统而降低原有系统的整体可靠性,同时在变频运行时,调节电动机转速,达到节能效果。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

异步电动机转矩控制软起动仿真

软起动技术有利于改善异步电动机起动过程中产生过大电流问题,本文详细分析、比较了变频、液阻和晶闸管串联等软起动方法的特点,采用晶闸管串联技术和转矩控制策略,实现异步电动机固态软起动。利用MATLAB/SIMULINK对转矩控制闭环系统建立了仿真模型并进行了仿真实验,仿真结果表明采用转矩控制方式,软起动装置能够很大程度地降低起动转矩和起动电流,能够很好地控制异步电动机的启动过程。


1引言

鼠笼式异步电动机在全压直接起动时,起动电流可以达到额定电流的5-7倍,会造成电动机绕组因过流引起过温,从而加速绝缘老化。同时,硬起动造成的过电流也势必会造成电网电压急剧下降,影响其他电力设备的正常使用,且电网电压的急剧下降,使起动转矩减小,有造成起动失败的可能性。异步电动机降压起动目前应用比较普遍的有:串电阻或者串电抗起动、Y—△起动。自藕变压器降压起动等方法。这些传统降压起动方法很大程度上缓解了大容量电机在相对较小容量电网上起动时的矛盾,但是它们只是降低起动电流冲击,并没有从本质上解决问题,而且还造成起动转矩同时在减小,在切换瞬间还会产生二次冲击电流。近年来,随着电力电子技术的发展,使无电弧开关和连续调节电流成为可能。为电动机的起动提供了全新的思路,从而出现了电机软起动技术。晶闸管串联式的高压软起动器应运而生,如美国的BS公司。英国的CT公司。法国的TE公司、瑞典的ABB公司等软起动器系列产品已成为市场的主流。其中美国的BS公司采用晶闸管串联技术生产的重压6~13.8KV软启动器,最大功率可以达10MV。国内的中源ZY—FR1000系列软启动器性能达到国际先进水平,湖北省万洲电气有限公司WGQH系列高压固态软启动器也具有国内先进的水平。

2软起动方法

2.1变频启动

变频器用于交流电机起动,起动电流小、起动力矩大、调速曲线平滑调速范围大、运行平稳,起动速度快,是交流电机理想的起动方式。但是,高压变频器更适用于需要调速的电机系统,且价格高昂,单纯做软起动装置使用太浪费。

2.2液阻式降压软起动

2.2.1液阻软起动

液阻式一种由电解液形成的电阻,起到点本质是离子导电。电解液中有两个导电极板,即固定板和动级板,伺服系统控制动级板得距离来改变起动电阻值。

2.2.2热变电组软起动

与液阻的主要区别在于电机不动,热变电阻呈现明显的负温特性。

液阻式软起动装置的不足时电机起动时,液体电阻发热,要消耗一定的电能,且不适合频繁起动场合。但因其投资少,性能好(无级控制,热容量大),不会产生谐波影响电网,使用于高压发大功率和重载起动。

2.3磁饱和电抗软起动

磁饱和电抗器的等效电抗值是可控的,它利用铁心的饱和特性,通过改变直流励磁改变其电抗参数,可以实现电流闭环控制,且可实现软停车。与高压晶闸管软起动相比,其缺点是控制快速性比较差,噪声较大,也会产生一定的高次谐波。

2.4开关变压器软起动

用开关变压器隔离高压和低压,通过改变其低压绕组上电压来改变高压绕组上的电压,从而达到改变电机端电压的目的,以实现软起动。不必采用晶闸管串联技术,可靠性大大提高,且谐波很小。此外,电压电流可全范围调节。可构成闭环控制,时间常数小,反应迅速。

2.5晶闸管串联软起动调压电路,

在高压电网和电动机之间接入反并联晶闸管通过控制晶闸的触发角进行斩波,起到调压作用。由于单只晶闸管还不足以高压,所以采用串联技术,例如在设计6KV高压软起动装置的时候功率单元常采用3只晶闸管串联的方式提高耐压值。该系统对均压电路、触发电路的性能要求较高,对元器件参数的一致性要求比较高。可实现输出电压连续可调,能完全免除对电网和电动机及机械设备的冲击。

综上所述,晶闸管具有体积小、实现软启动停容易能量损耗小、启动方式多样化等特点。同时,多个晶闸管串联,需要解决同步触发、均压、均流等技术关键。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

电子式感应电机软启动研究

为抑制电动机的启动电流,本文对软起动作了研究,主要论述了软启动设备的系统结构及其仿真。

电机起动分为直接起动和软起动。直接起动为全压起动,所用设备简单,投资少,但启动电流大,在配电系统产生较大压降,影响同母线连接设备运行,尤其是起动转矩过大对电机及传动机械产生巨大的冲击,加速电机的老化及机械的损坏。软启动能抑制电动机起动电流,在限定时间内将它驱动到额定转速,并在必要情况下多次连续起动。该过程兼有若干保护功能,当短路、过载、起动超时、欠电压、系统异常等故障时,软启动装置能做出相应防护并发出警示信号。

软启动过程以计算机为工具,利用软件,通过建立输入电动机、电网和负载数学模型,根据选定控制策略作出离线模拟。其中电子式感应电机软启动,选用微处理器和晶闸管电子元件组成启动器控制。

启动器开启时,微处理器发出脉冲加到晶闸管触发极上,控制晶闸管导通角,使晶闸管输出电流电压大小受触发脉冲宽度来决定。缓慢调节微处理器,控制晶闸管输出电压由零缓慢升至全压,此时电动机转速也由零升至额定转速。在发出停机指令后,微处理器监测电压电流和电动机反馈信号,晶闸管可使输出电压按一定要求下降,使电动机由全压逐渐降为零而实现软停止。

实际应用中,软启动具有如下优点:①起动电流小,通过调节起动转矩实现低速起动,频繁起动和软停止。②在起停时过渡自然,不易伤害设备,节电效果良好。③当多台同容量水泵工作,可采用一台电子式软启动器,操作方便。④软启动离线仿真研究可以预知在硬起动过程中电机转速、电流、线电压和其它机械特性,对产品设计和用户使用有重要指导作用。

1电路结构

1.1系统框图

电子式感应电机软启动框图如图1所示。信号采集及对应的处理电路采集同步信号作为相角移动控制基础参考,确保信号正确触发;信号感应电路对信号发生反应,如电流和功率因数角等,为起动控制和保护控制提供必要信息;启动控制电路为软启动选择合适控制策略;保护控制电路对过压、过流等进行监控,确保电机安全运行;相角移动控制电路产生脉冲,控制触发角时刻和大小。

1.2感应电机软启动主电路

软启动器是从速度控制装置得到的,其主电路见图2,三对可控晶闸管形成固态三相电压调节器,通过均匀控制可控晶闸管触发角,灵活的控制电机在额定电压下运行。

1.3控制电路模型

控制电路模型是由4个控制子系统构成。

每个子系统直接由仿真模块建立。在交流电路模块控制角开始时,每相电压为零,同步信号应从电源相电压信号获得。

根据同步脉冲产生原理,可由普通仿真模块组成脉冲发生器模型。笔者采用6同步脉冲发生器,电机起动电流值可以应用RMS模块获得。软启动过程关键要限制启动电流,当电压逐步升高,直到接近给定限制电流时,保持电压不变。

2软启动仿真

2.1感应电机软启动系统

软启动子系统的内部结构,它由两个双向晶闸管封装而成。系统仿真电路图中,三相电源由三个单相电源组成。系统采用鼠笼式感应电机,异步电机测量系统可以测出很多参数,如定子、转子电流,电压等。同步信号采集器将A、B、C三个相电压转化成A-C、B-A、C-B三个线电压输入脉冲发生器。脉冲发生器产生宽脉冲,触发三对双向晶闸管来控制机端电压。触发控制器根据定子电流反馈来控制脉冲发生器触发角。

2.2参数设置

①三相电源:每一相电源电压为380V,频率为50Hz,第一个单向电源的相角为0°,第二个单向电源的相角为120°,第三个单向电源的相角为-120。②电机:视在功率3×746VA,线间电压为380V,频率50Hz,其它参数为默认值。③触发系统:频率50Hz。④仿真时间:3s。

2.3结果分析

设置好参数后,单击运行可进行离线仿真,双击显示器可查看参数曲线。如直接启动时的定子电流和转矩曲线,可知系统启动瞬时,产生较大的冲击量(约为稳定时的10倍),过程变化突然,在0.1s后趋于平稳。并可查看电子式软启动下的情形,可看出定子电流和转矩在启动瞬时冲击明显减弱,变化趋于平缓,有利于系统稳定和保护设备。

3结束语

电子式软启动以计算机为工具,在已知并输入电动机,电网和负载数学模型基础上,根据选定控制策略做出离线模拟。本文通过设计系统框图和仿真模拟电路,得到软启动下电机定子电流和转矩的变化曲线,较好的改善了直接启动所带来的巨大冲击。该方法在小容量电机中得到广泛应用,收到较好的经济效益。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

三相交流异步电动机故障处理方法

三相交流异步电动机是工农业生产中最常见的电气设备,其作用是把电能转换为机械能。其中用得最多的是鼠笼型异步电动机,其结构简单,起步方便,体积较小,工作可靠,坚固耐用,便于维护和检修。为了保证异步电动机的安全运行,电气工作人员必须掌握有关异步电动机的安全运行的基本知识,了解对异步电动机的安全评估,做到尽可能地及时发现和消除电动机的事故隐患,保证电动机安全运行。


电动机在运行中由于种种原因,会出现故障,故障分机械与电气两方面

一、械方面有扫膛、振动、轴承过热、损坏等故障。

1、异步电动机定、转子之间气隙很小,容易导致定、转子之间相碰。一般由于轴承严重超差及端盖内孔磨损或端盖止口与机座止口磨损变形,使机座、端盖、转子三者不同轴心引起扫膛。如发现对轴承应及时更换,对端盖进行更换或刷镀处理。

2、振动应先区分是电动机本身引起的,还是传动装置不良所造成的,或者是机械负载端传递过来的,而后针对具体情况进行排除。属于电动机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良,转轴弯曲,或端盖、机座、转子不同轴心,或者电动机安装地基不平,安装不到位,紧固件松动造成的。振动会产生噪声,还会产生额外负荷。

3、如果轴承工作不正常,可凭经验用听觉及温度来判断。用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠扎碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,因为电动机要每运行3000-5000小时左右需换一次润滑脂。例如在球磨机电机其型号是JR138--8-245KW,由于运转一年多后,轴承发出不正常的声音,用听棒接触轴承盒,听到了“咝咝”的声响,同时还有微小“哒哒”的冲击声,对其进行检修,打开发现轴承盒内缺油,同时轴承滚柱有的以有细微的麻痕。这样对轴承进行了更换,添加润滑油脂。在添润滑脂时不易太多,如果太多会使轴承旋转部分和润滑脂之间产生很大的磨擦而发热,一般轴承盒内所放润滑脂约为全溶积二分之一到三分之二即可。在轴承安装时如果不正确,配合公差太紧或太松,也都会引起轴承发热。在卧式电动机中装配良好的轴承只受径向应力,如果配合过盈过大,装配后会使轴承间隙过小,有时接近于零,用手转动不灵活,这样运行中就会发热。

二、电气方面有电压不正常绕组接地绕组短路绕组断路缺相运行等。

1、电源电压偏高,激磁电流增大,电动机会过分发热,过分的高电压会危机电动机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大造成电动机过载而发热,长时间会影响电动机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电动机发热,同时转距减小会发出“翁嗡”声,时间长会损坏绕组。总之无论电压过高过低或三相电压不对称都会使电流增加,电动机发热而损坏电动机。所以按照国家标准电动机电源电压在额定值±5%内变化,电动机输出功率保持额定值。电动机电源电压不允许超过额定值的±10%,;三相电源电压之间的差值不应大于额定值的±5%。

2、电动机绕组绝缘受到损坏,及绕组的导体和铁心、机壳之间相碰即为绕组接地。这时会造成该相绕组电流过大,局部受热,严重时会烧毁绕组。出现绕组接地多数是电动机受潮引起,有的是在环境恶劣时金属物或有害粉末进入电动机绕组内部造成。电动机出现绕组接地后,除了绝缘已老化、枯焦、发脆外都可以局部处理,绕组接地一般发生在绕组伸出槽外的交接处(绕组端部),这时可在故障处用天然云母片或绝缘纸插入铁心和绕组之间,在用绝缘带包扎好涂上绝缘漆烘干即可,如果接地点在铁心槽内时,如果上成边绝缘损坏,可以打出槽楔修补槽衬或抬出上成线匝进行处理,若故障在槽底或者多处绝缘受损,最好办法就是更换绕组。

3、绕组中相邻两条导线之间的绝缘损坏后,使两导体相碰,就称为绕组短路。发生在同一绕组中的绕组短路称为匝间短路。发生在两相绕组之间的绕组短路称为相间短路。不论是那一种,都会引起某一相或两相电流增加,引起局部发热,使绝缘老化损坏电动机。出现绕组短路时,短路点在槽外修理并不难。当发生在槽内,如果线圈损坏不严重,可将该槽线圈边加热软化后翻出受损部分,换上新的槽绝缘,将线圈受损的部位用薄的绝缘带包好并涂上绝缘漆进行烘干,用万用表检查,证明已修好后,再重新嵌入槽内,进行绝缘处理后就可继续使用,如果线圈受损伤的部位过多,或者包上新绝缘后的线圈边无法嵌入时,只好更换新的绕组。

4、绕组断路是指电动机的定子或转子绕组碰断或烧断造成的故障。定子绕组断部,各绕组元件的接头处及引出线附近。这些部位都露在电动机座壳外面导线容易碰断,接头处也会因焊接不实长期使用后松脱,发现后重新接好,包好并涂上绝缘漆后就可使用。例如电机其型号是Y132M-47.5KW在工作中突然发出声响后停车,经检查后发现绕组一相断路。打开电动机瓦盖后,发现电动机壳外导线与绕组连接处断开,其原因就是焊接不实,长期使用后松脱。打开捆绳,处理后重新焊接,包好涂上绝缘漆后继续使用。如果因故障造成的绕组被烧断则需要更换绕组。如转子绕组发生断路时,可根据电动机转动情况判断。一般表现为转速变慢,转动无力,定子三相电流增大和有“嗡嗡”的现象,有时不能起动。出现转子绕组断路时,要抽出转子先查出断路的部位,一般是滑环和转子线圈的交接处开焊断裂所引起,重新焊接后就可使用。如果是线圈内部一般使用断条侦察器等专用设备来确定断路部位。例如:电动机型号JZR212-63.5KW在开车时,突然发现小车无力,并且伴有翁翁的响声。经检查发现转子一相断路。打开抽出转子看到滑环和转子线圈交接处开焊,把接头处用纱布处理干净,重新用电烙铁焊接,焊接后又可继续使用。

5、三相异部电动机在运行过程中,断一根火线或断一相绕组就会形成缺相运行(俗称单相),如果轴上负载没有改变,则电动机处于严重过载状态,定子电流将达到额定值的二倍甚至更高,时间稍长电动机就会烧毁。在各行业中,因缺相运行而烧毁的电动机所占比重最大。一般电动机缺相是由于某相熔断器的熔体接触不良,或熔丝拧的过紧而几乎压断,或熔体电流选择过小,这样通过的电流稍大就会熔断,尤其是在电动机起动电流的冲击下,更容易发生熔体非故障性熔断。有时电动机负荷线路断线,一般是安装不当引起的断线,特别是单芯导线放线时产生的小圈扭结,接头受损等都可能使导线在运行过程中发生断线。由于电动机长期使用使绕组的内部接头或引线松脱或局部过热把绕组烧断电动机出现缺相运行时。总之,不管是什么样的缺相,只要能及时发现,对电动机不会造成大的危害。为了预防电动机出现缺相运行,除了正确选用和安装低压电器外,还应严格执行有关规范,敷设馈电线路,同时加强定期检查和维护。

6、电动机的接地装置。电动机接地是一个重要环节,可是有的单位往往忽视了这一点,因为电动机不明显接地也可以运转,但这给生产及人身安全埋下了不安全隐患。因为绝缘一旦损坏后外壳会产生危险的对地电压,这样直接威胁人身安全及设备的稳定性。所以电动机一定要有安全接地。所谓的电动机接地就是将电气设备在正常情况下不带电的某一金属部分通过接地装置与大地做电气连接,而电动机的接地就是金属外壳接地。这样即使设备发生接地和碰壳短路时电流也会通过接地向大地做半球形扩散,电流在向大地中流散时形成了电压降,这样保证了设备及人身安全。

三、结束语

综上所述,为了能采用正确的方法进行电动机的故障修理,就必须熟悉电动机常见故障的特点及原因,才能少走弯路,节省时间,尽快地将故障排除,恢复电动机故障,使电动机处于正常的运转状态。做好电动机的定期检查和维护工作,也是保证电动机安全运行,延长寿命的有效措施之一。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

三相异步电动机的基本结构

电动机(Motors)是把电能转换成机械能的设备,它是利用通电线圈在磁场中受力转动的现象制成,分布于各个用户处,电动机按使用电源不同分为直流电动机和交流电动机,电力系统中的电动机大部分是交流电机,可以是同步电机或者是异步电机(电机定子磁场转速与转子旋转转速不保持同步速)。电动机主要由定子与转子组成。通电导线在磁场中受力运动的方向跟电流方向和磁感线(磁场方向)方向有关。电动机工作原理是磁场对电流受力的作用,使电动机转动。

(一)定子(静止部分)

1、定子铁心

作用:电机磁路的一部分,并在其上放置定子绕组。

构造:定子铁心一般由0.35~0.5毫米厚表面具有绝缘层的硅钢片冲制、叠压而成,在铁心的内圆冲有均匀分布的槽,用以嵌放定子绕组。

定子铁心槽型有以下几种:

半闭口型槽:电动机的效率和功率因数较高,但绕组嵌线和绝缘都较困难。一般用于小型低压电机中。

半开口型槽:可嵌放成型绕组,一般用于大型、中型低压电机。所谓成型绕组即绕组可事先经过绝缘处理后再放入槽内。

开口型槽:用以嵌放成型绕组,绝缘方法方便,主要用在高压电机中。

2、定子绕组

作用:是电动机的电路部分,通入三相交流电,产生旋转磁场。

构造:由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。

定子绕组的主要绝缘项目有以下三种:(保证绕组的各导电部分与铁心间的可靠绝缘以及绕组本身间的可靠绝缘)。

(1)对地绝缘:定子绕组整体与定子铁心间的绝缘。

(2)相间绝缘:各相定子绕组间的绝缘。

(3)匝间绝缘:每相定子绕组各线匝间的绝缘。

电动机接线盒内的接线:

电动机接线盒内都有一块接线板,三相绕组的六个线头排成上下两排,并规定上排三个接线桩自左至右排列的编号为1(U1)、2(V1)、3(W1),下排三个接线桩自左至右排列的编号为6(W2)、4(U2)、5(V2),.将三相绕组接成星形接法或三角形接法。凡制造和维修时均应按这个序号排列。

3、机座

作用:固定定子铁心与前后端盖以支撑转子,并起防护、散热等作用。

构造:机座通常为铸铁件,大型异步电动机机座一般用钢板焊成,微型电动机的机座采用铸铝件。封闭式电机的机座外面有散热筋以增加散热面积,防护式电机的机座两端端盖开有通风孔,使电动机内外的空气可直接对流,以利于散热。

(二)转子(旋转部分)

1、三相异步电动机的转子铁心:

作用:作为电机磁路的一部分以及在铁心槽内放置转子绕组。

构造:所用材料与定子一样,由0.5毫米厚的硅钢片冲制、叠压而成,硅钢片外圆冲有均匀分布的孔,用来安置转子绕组。通常用定子铁心冲落后的硅钢片内圆来冲制转子铁心。一般小型异步电动机的转子铁心直接压装在转轴上,大、中型异步电动机(转子直径在300~400毫米以上)的转子铁心则借助与转子支架压在转轴上。

2、三相异步电动机的转子绕组

作用:切割定子旋转磁场产生感应电动势及电流,并形成电磁转矩而使电动机旋转。

构造:分为鼠笼式转子和绕线式转子。

(1)鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的端环组成。若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组。小型笼型电动机采用铸铝转子绕组,对于100KW以上的电动机采用铜条和铜端环焊接而成。鼠笼转子分为:阻抗型转子、单鼠笼型转子、双鼠笼型转子、深槽式转子几种,起动转矩等特性各有不同。

(2)绕线式转子:绕线转子绕组与定子绕组相似,也是一个对称的三相绕组,一般接成星形,三个出线头接到转轴的三个集流环上,再通过电刷与外电路联接。

特点:结构较复杂,故绕线式电动机的应用不如鼠笼式电动机广泛。但通过集流环和电刷在转子绕组回路中串入附加电阻等元件,用以改善异步电动机的起、制动性能及调速性能,故在要求一定范围内进行平滑调速的设备,如吊车、电梯、空气压缩机等上面采用。

(三)三相异步电动机的其它附件

1、端盖:支撑作用。

2、轴承:连接转动部分与不动部分。

3、轴承端盖:保护轴承。

4、风扇:冷却电动机。

三相异步电动机型号字母表示的含义:

J——异步电动机;O——封闭;L——铝线缠组;

W——户外;Z——冶金起重;Q——高起动转轮;

D——多速;B——防爆;R一绕线式;

S——双鼠笼;K一—高速;H——高转差率。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

异步电动机软启动的特点

电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。直流电动机其调速在过去一直占统治地位,但由于本身结构原因,例如换向器的机械强度不高,电刷易于磨损等,远远不能适应现代生产向高速大容量化发展的要求。而交流电动机,特别是三相鼠笼式异步电动机,由于其结构简单、制造方便、价格低廉,而且坚固耐用,惯量小,运行可靠等优势,在工业生产中得到了极广泛的应用,也正在发挥着越来越重要的作用。


交流电动机和直流电动机相比存在许多优点,但当异步电机在起动过程中又有许多弊病。所谓起动过程是在交流传动系统中,当异步电动机投入电网时,其转速由零开始上升,转速升到稳定转速的全过程。如不采用任何起动装置的情况下,直接加额定电压到定子绕组起动电动机时,电机的起动电流可达额定电流的4~8倍,其转速也在很短时间内由零上升到额定转速。同时三相感应电动机起动时的转矩冲击较大,一般可达额定转矩的两倍以上。

起动时过高的电流一方面会造成严重的电网冲击,给电网造成过大的电压降落,降低电网电能质量并影响其他设备的正常运行。而过大的转矩冲击又将造成机械应力冲击,影响电动机本身及其拖动设备的使用寿命。因此,通常总是力求在较小的起动起动电流下得到足够大的起动转矩,为此就要选择合适的起动方法。在选择起动方法时可以根据具体情况具体要求来选择。

对三相鼠笼式异步电动机的起动电流的限制,通常有定子串接电抗器起动、Y-△起动、自藕变压器将压起动、延边三角形起动。而对绕线式交流电动机,常采用转子串接频敏变阻器起动、转子串电阻分级起动。但这些传统的起动方法都存在一些问题。

1.定子串接电阻起动:由于外串了电阻,在电阻上有较大的有功损耗,特别对中型、大型异步电动机更不经济,因此在降低了起动电流的同时、却付出了较大的代价—起动转矩降低得更多,一般只能用于空载和轻载。

2.Y--△起动:丫一△起动方法虽然简单,只需一个Y一△转换开关。但是Y--△起动的电动机定子绕组六个出线端都要引出来,对于高电压的电动机有一定的困难,一般只用于△接法380v电动机。

3.自祸变压器将压起动:自祸变压器将压起动,比起定子串接电抗器起动,当限定的起动电流相同时,起动转矩损失的较少;比起卜△起动,有几种抽头供选用比较灵活,并且巩/峨较大时,可以拖动较大些的负载起动。但是自祸变压器体积大,价格高,也不能拖动重负载起动。

4.延边三角形起动:采用延边三角形起动鼠笼式异步电动机,除了简单的绕组接线切换装置之外,不需要其他专用起动设备。但是,电动机的定子绕组不但为△接,有抽头,而且需要专门设计,制成后抽头又不能随意变动。

随着电力技术(尤其是集成电路、微处理器以及新一代电力电子器件)的不断发展,异步电动机起动过程中的起动电流过高,起动转矩过小等问题得到了很好的解决。

电子软起动器相对于传统的起动方式,其突出的优点体现在:

1.电力半导体开关是无电弧开关和电流连续的调节,所以电子软起动器是无级调节的,能够连续稳定调节电机的起动,而传统起动的调节是分档的,即属于有级调节范围。

2.冲击转矩和冲击电流小。软起动器在起动电机时,是通过逐渐增大晶闸管的导通角,使电机起动电流限制在设定值以内,因而冲击电流小,也可控制转矩平滑上升,保护传动机械、设备和人员。

3.软起动器可以引入电流闭环控制,使电机在起动过程中保持恒流,确保电机平稳起动。

4.根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的起动电流,节省电能。

5.由于采用微机控制,可在起动前对主回路进行故障诊断,且数字化的控制具有较稳定的静态特性,不易受温度、电源电压及时间变化等因素的影响,因此提高了系统的可靠性,有助于系统维护.

同时,软起动器还能实现直接计算机通讯控制,为自动化控制打下良好的基础。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接