工业伺服节能改造,关于工业园区节能降耗方案信息聚合页,专注于工业园区节能降耗方案:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
节能改造关注问答
1、

直流电机使用检查注意事项

1、步进电机周围应保持干燥,其内外部均不应放置其他物件。电机的清洁工作每月不得少于一次,清洁时应以压缩空气吹净内部的灰尘,特别是换向器、线圈连接线和引线部分。

2、换向器的保养

(1)换向器应是呈正圆柱形的表面,不应有机械损伤和烧焦的痕迹。

(2)换向器在负载下长期无火花运转后,在表面产生一层褐色有光泽的坚硬薄膜,这是正常现象,它能保护换向器的磨损,这层薄膜必须加以保护,不能用砂布摩擦。

(3)若换向器表面出现粗糙、烧焦等现象时可用“0”号砂布在旋转着的换向器表面进行细致研磨。若换向器表面出现过于粗糙不平、不圆或有部分凹进现象时应将换向器进行车削,车削速度不大于1.5m/s,车削深度及每转进刀量均不大于0.1mm,车削时换向器不应有轴向移动。

(4)换向器表面磨损很多时,或经车削后,发现云母片有凸出现象,应以铣刀将云母片铣成1~1.5mm的凹槽。

(5)换向器车削或云母片下刻时,须防止铜屑、灰尘侵入电枢内部。因为要将电枢线圈端部及接头片覆盖。加工完毕后用压缩空气做清洁处理。

3、电刷的使用

(1)电刷与换向器的工作表面应有良好的接触,电刷压力正常。电刷在刷握内应能滑动自如。电刷磨损或损坏时,应以牌号及尺寸与原来相同的电刷更替之,并且用“0”号砂布进行研磨,砂布面向电刷,背面紧贴换向器,研磨时随换向器作来回移动。

(2)电刷研磨后用压缩空气作清洁处理,再使电动机作空载运转,然后以轻负荷(为额定负载的1/4~1/3)运转1小时,使电刷在换向器上得到良好的接触面(每块电刷的接触面积不小于57%)。

4、轴承的保养

(1)轴承在运转时温度太高,或发出有害杂音时,说明可能损坏或有外物侵入,应拆下轴承清洗检查,当发现钢珠或滑圈有裂纹损坏或轴承经清洗后使用情况仍未改变时,必须更换新轴承。轴承工作2000~2500小时后应更换新的润滑脂,但每年不得少于一次。

(2)轴承在运转时须防止灰尘及潮气侵入,并严禁对轴承内圈或外圈的任何冲击。

5、绝缘电阻

(1)应当经常检查步进电机的绝缘电阻,如果绝缘电阻小于1MΩ时,应仔细清除绝缘上的污物和灰尘,并用汽油、甲苯或四氯化碳清除之,待其干燥后再涂绝缘漆。

(2)必要时可采用热空气干燥法,用通风机将热空气(80℃)送入电动机进行干燥,开始绝缘电阻降低,然后升高,最后趋于稳定。

6、通风系统

小编建议应经常检查定子温升,判断通风系统是否正常,风量是否足够,如果温升超过允许值,应立即停车检查通风系统。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

浅析永磁电机的五大节能原理

一异步电机(感应电机)的工作原理是通过定子的旋转磁场在转子中产生感应电流,产生电磁转矩,转子中并不直接产生磁场。因此,转子的转速一定是小于同步速的(没有这个差值,即转差率,就没有转子感应电流),也因此叫做异步电机。而智能工业电机转子本身产生固定方向的磁场(用永磁铁或直流电流),定子旋转磁场“拖着”转子磁场(转子)转动,因此转子的转速一定等于同步速,也因此叫做同步电机。智能工业电机的转速n始终为n=60f/p不变,式中f为设定频率,p为电机极对数。

由于不需要从电网吸收无功电流,转子上既无铜耗又无铁耗,所以同步电机在很宽的负载范围内能保持接近于1的功率因数,机器效率比同容量的异步电动机提高8%左右,力能指标(ηXcosΦ)提高18%左右。

二智能工业电机的功率密度比同容量的异步电动机提高25%左右。同样功率的电动机,智能工业电机要比异步电动机小2个机座号,体积小意味着铁损小,以及机械损耗小。

三智能工业电机比同功率的异步电动机效率高,同时高效区宽,智能工业电机的转速范围在25%-990%额定转速时,效率达到95%-97%,而异步电动机的转速范围在70%-99%额定转速时,效率只有88%,当转速低于70%额定转速时,效率会急剧下降。

四智能工业电机和异步电机在不同转速情况下的转矩比较

五异步电机起动时,电流是额定电流的6-7倍,对电动机寿命不利,为了达到需要的扭矩,甚至还有加大电机型号,而电机运行时处于低负荷工作,效率降低。而智能工业电机启动时,电流是逐渐增加的,不会超过额定电流,扭矩也能达到额定扭矩,没有电流冲击,延长了使用寿命,电机处于合理的负荷工作。节能原理说明六永磁同步电动机转速控制精准。在转速要求高的场合有更大的优势。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

电机节能的方式有哪些?

选择合适的电动机容量

能够满足负载的需要,实现合理匹配。轻载和空载运行都会造成损耗相对高,运行效率低。同一台电动机拖动的负载,运行效率也是在变化的,不是固定不变的,随着负载大小的波动而在变化。

空载运行时间长的电动机安装自控装置为了减少空载时间内的电能损失,对于经常性空载的电动机,应安装空载自控装置。在空载运行一段时间后,能够自动切断电源,退出空载运行,恢复正常运行状态。

低负载率的电动机降压运行

三相异步电动机的铁损和铜损,与输入电压的大小直接有关。一般负载不变的情况下,降低输入电压可使铁损减少,铜损增加。但是这时轻载运行电动机的总损耗中,铁损要比铜损的作用大。因此,适当降低绕组电压运行的办法能使总的损耗下降,具有一定的现实意义。而实现这一措施,可以通过特别的电压自控装置来完成。

采用磁性槽泥实施电动机改造

采用磁性槽泥对电动机进行技术改造,是一种降低槽口磁阻的有效办法。也就是在竹制槽楔上,用磁性槽泥将槽口抹平。这对电动机及其所带负载均有利,系统具有节电作用。

三相异步电动机采用变频调速

三相异步电动机采用变频调速,可在低频起动时大大减少电动机的起动电流,从而实现节电目的。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


4、

受转速影响导致器具受的总扭矩M不能保持恒定

由于切割元件的存在,方式三与方式一存在相似的问题。在U额定时工具上的额定扭矩M其实有两部分:切割元件的转矩M1和测功机的扭矩M2,仪表显示的即M2。电压变化时M2保持不变,而M1的大小受转速影响导致器具受的总扭矩M不能保持恒定。导致了测试到的效率比实际效率偏低。对于额定扭矩本身就很小的器具,扭矩的微小变化便会引起测量结果的较大差别。所以方式三仍不符合标准要求。正常工作时的运动部件,如砂轮片等具有散热功能,如果试验过程中不安装会导致温升增加,故试验时应安装类似部件,以模拟实际工况。

砂轮片部件被认为是没有旋转不平衡量的,否则一方面加载扭矩不恒定,另一方面由于不平衡引起的转矩变化对温升的影响会抵消甚至远大于其散热对温升的影响。对手持式割草机温升测试结果有影响的,不仅是器具本身,试验过程中的各种不当因素也会造成试验结果的不准确,其中以加载方式的影响尤为明显。

在温升测试中,根据实际情况决定是否安装正常工作需带的旋转部件时,应首先保证部件的不平衡量不会影响到加载扭矩的恒定保持。对手持式割草机温升测试,切割元件和带切割元件同时连测功机的加载方式均不宜采用。仅连测功机的加载方式是符合标准要求的,当对试验结果有疑义时,应以此为准。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


5、

电机与电力拖动在经济中的作用与发展趋势

在工农业中,国防事业和人们的日常生活中,电能是最重要的能源之一。电机在日常生活中起着重要作用,在电机中,电机碳刷,电机滑环是不可缺少的。与其他能源相比,电能具有转换经济、传输和分配容易、使用和控制方便等优点外。

自然界中不存在可以直接使用的电源,电能通常是由其他形式的能量转换而来的。其中将机械能转换为电能的装置就是发电机。

我们碳刷、滑环厂家以为电能的传输和分配离不开变压器。发电厂的碳刷质量十分重要,发电厂发出的电能通过电力网应能够实现远距离传输,一般碳刷发电机传输的电压为10-20KV,为了实现远距离传输、减少传输损耗,常用变压器将发电机发出的电压升高至110KV/220KV/330KV/500KV,甚至更高。

输送到用电地区后,要经过变压器将至用户能承受的数值,才能供用户使用。

电能的利用就是将电能转换为其他形式的能量。利用电动机将电能转换为机械能,拖动生产机械工作是电能利用的一个重要方面。用电动机拖动生产机械所组成的系统称为电力拖动系统。电力拖动系统具有以下几个优点:传动效率高、运行经济;电动机种类和规格繁多,具有良好的特性,能满足不同机械的需要;电力拖动系统操作和控制方便,能实现自动控制和远距离控制。

在现代工业企业中,几乎所有生产机械都是由电动机拖动的,如各种机床、生产线、风机、水泵等。可以毫不夸张的说,没有电动机、没有电力拖动技术,就没有现代化工业。

迄今为止,世界上几乎所有的电能是有同步发电机发出来的,发电机生产的大部分电能是通过电动机消耗的。因此,电机和电力拖动技术在国民经济中具有极其重要的作用。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

变频电机轴电压与轴电流的产生机理分析


3.轴承模型与轴承电流的产生由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均由一个轴承支撑,其结构如图3所示。以其中一个轴承为例,轴承的滚道由内滚道与外滚道组成,当电机转动时,轴承中的滚珠被润滑油层包围,由于润滑油的绝缘作用,轴承滚道与滚珠之间形成电容,如图3b)所示。这两个电容在转子-定子回路中以串联形式存在(为便于分析,不考虑滚珠的阻抗),可以等效成一个电容cbi,i代表轴承中的第i个滚珠。对于整个轴承而言,各个滚珠与滚道之间的电容以并联形式存在。所以整个轴承内可以等效成一个电容cb。据对轴承的分析,轴承可用一个带有内部电感和电阻的开关来等效。当滚珠未与滚道接触时,开关断开,转子电压建立;当转子电压超过油膜门槛电压时,油膜击穿开关导通,转子电压迅速内放电,在轴承内形成较大放电电流。va、vb和vc为电机三相输入电压,l’、r’和c’为输入电压耦合到转子轴的等效集中参数,cg为crf和cb并联后的等效电容。当轴承滚珠和滚道接触或者轴承内油层被击穿时,cb不存在,此时cg仅代表转子轴对机壳的耦合电容。电容cb是一个多个变量的函数:cb(q,v,t,η,λ,λ,εr)[2]。其中q代表功率,v代表油膜运动速度,t代表温度,η代表润滑剂粘性,λ代表润滑剂添加剂,λ代表油层厚度,εr代表润滑剂介电常数。轴承电容cb与定子到转子耦合电容csr,比定子到机壳耦合电容csf和转子到机壳耦合电容crf小得多。这样一来,耦合到电机轴承上的电压便不至于过大,这是因为crf与cb并联后的电容比耦合回路中与之串联的csr大得多,而串联电容回路中,电容越大承受的电压反而越小。事实上,根据分布电容的特点,很大一部分共模电流是通过定子绕组与铁芯之间的耦合电容csf传到大地去的,因此轴承电流只是共模电流的一部分。从图4可看出,形成轴承电流有两种基本途径。一是由于分布电容的存在,定子绕组和轴承形成一个电压耦合回路,当绕组输入电压为高频pwm脉冲电压时,在这个耦合回路势必产生dv/dt电流,这个电流一部分经crf传到大地,另一部分经轴承电容cb传到大地,即形成所谓的dv/dt轴承电流,其大小与输入电压以及电机内分布参数有关。二是由于轴承电容的存在,电机轴上产生轴电压,当轴电压超过轴承油层的击穿电压时,轴承内外滚道相当于短路,从而在轴承上形成很大放电电流,即所谓的电火花加工(electricdischargemachining-edm)电流。另外,当电机在转动时,如果滚珠和滚道之间有接触,同样会在轴承上形成大的edm电流。为了定量edm及dv/dt电流对轴承的影响,轴承内的电流密度十分关键。建立电流密度需估计滚珠与滚道内表面的点接触区域。根据赫兹点接触理论(hertzianpointcontacttheory),轴承电气寿命可用如下公式求得[2]:eleclife(hrs)=(7)式中,代表轴承电流密度。一般而言,dv/dt电流对轴承寿命影响很小,而由edm产生的轴承电流密度很大,使得轴承寿命大大降低。另外,空载时轴承损坏程度反而比重载时大得多,这是因为重载时轴承接触面积增大,无形中减小了轴承电流密度。

4.轴电压与轴承电流的仿真分析为进一步讨论轴承电流与pwm逆变器输出电压特性以及电机端有无过电压之间的关系,本文对dv/dt电流与edm电流两种形式的轴承电流分别进行仿真分析,结果发现,轴承电流不仅与逆变器载波频率有关,且与逆变器输出脉冲电压的上升时间有关,同时当电机端出现过电压时轴承电流明显增加。先假定电缆长度为零,根据轴承电流的存在形式可知,dv/dt电流主要是由输入跳变电压引起,因此dv/dt电流大小与逆变器载波频率和电压上升时间有关。逆变器载波频率越高,一个正弦波周期内产生的dv/dt电流数量也就越多,但此时电流幅值不变。脉冲电压上升时间是影响dv/dt电流幅值的决定性因素,另外分布电容的大小也影响dv/dt电流幅值。而edm电流产生的直接原因是轴电压的存在,因此轴电压的大小决定了edm电流幅值,轴电压的大小决定于输入电压的大小及电机内分布电容的大小。虽然逆变器载波频率和脉冲电压上升时间都会影响轴电压的形状,但轴电压的峰值与二者都没有关系,因此edm电流与二者也没有本质的联系,这是edm电流与dv/dt电流最大区别之处。当然,edm电流还与轴承油层的击穿电压有关,击穿电压越高,产生的edm电流越大。为讨论方便,假设轴承击穿电压大于或等于轴电压。

4.1改变上升时间tr仿真得到不同上升时间的轴电压与轴承电流波形如图5所示,其中图a)和b)为轴电压波形,图c)和d)为轴承电流波形,电流波形中第一次出现振荡的为edm电流,其他为dv/dt电流。由分析可知,1)tr增大轴承电流减少,包括dv/dt电流与edm电流。尤其是dv/dt电流幅值减小十分明显,但tr对edm电流的影响不大,这主要是因为edm电流由轴电压以及轴承阻抗决定;2)当tr小于一定值(约为200ns)后,dv/dt电流甚至高于edm电流;3)改变上升时间对轴电压的影响不大;4)特殊现象:轴电压在电压击穿时出现两次振荡,tr不影响第一次振荡,但影响第二次振荡,且第二次振荡随着tr的上升而减少,其原因是轴承短路后定子绕组到转子的耦合路径依然存在,所以出现一个dv/dt电流振荡。

4.2改变耦合参数及轴承参数定子绕组对转子的耦合电容越大,轴电压越高,dv/dt电流与edm电流均增加;轴承电容减小,dv/dt电流减小;但edm电流基本不变,此时轴电压上升。其原因是:在共模电路中,轴电压是由定子绕组对转子铁心的电压耦合造成的,维持这一电压的存在靠轴承电容以及转子对机壳耦合电容。由于后两者并联,再与前者串联,因此轴电压按电容值进行分配,电容越大压降越小。一般情况下,轴承电容与转子对机壳耦合电容比定子绕组对转子耦合电容大得多。在只改变轴承电容的情况下,轴承电容越小,整个并联电容等效值下降,轴电压反而上升,由于轴承上的dv/dt电流与容抗及dv/dt成正比,在dv/dt不变时,容抗减小,dv/dt电流下降。仿真结果如图6所示。

5.抑制办法从前面的理论研究和仿真分析可以看出,电机轴承电流产生的一个主要原因是逆变器输出的高频脉冲具有过高的dv/dt前后沿,由此可知,抑制轴承电流的有效办法就是降低逆变器输出电压的dv/dt。但是,逆变器本身输出的脉冲电压上升时间是由功率器件的开关特性决定的,因此只能在逆变器输出端附加装置改变其输出电压的dv/dt。降低逆变器输出电压上升沿dv/dt的一个最直接的办法是在逆变器输出端串上大的电抗器,即可构成所谓的“正弦波滤波器”,逆变器输出的脉冲电压在经过大电抗器后成为完全的正弦波电压,这样便可以消除轴电压与轴承电流。但是这种办法的代价是电抗器的功率损耗大,体积大,造价高,在普通的变频调速系统中应用不是很合适。本文采用折中办法,在逆变器输出端串接电感值不大的电感以抑制电流的快速变化,同时在输出端线间设置rc电抗以吸收输出电压的高次谐波,这样可以适当降低输出脉冲电压上升沿的dv/dt值,达到抑制轴承电流的目的。逆变输出滤波器降低了电机输入脉冲电压的电压上升率,这样一来,电机内分布电容的电压耦合作用便会大大减弱,轴电压以及由此引起的edm电流都会下降,同时由于电压变化率引起的dv/dt电流也会明显减少,因此滤波器可以有效地抑制轴承电流的产生。图8给出了加入滤波器(未接地)前后的电机轴承电流仿真波形,其中,逆变器载波频率为5khz,脉冲电压上升时间为200ns,电缆长100m。从图中可以看出,无论edm电流还是dv/dt电流都明显减少。仿真中还发现,将滤波器接地,无论dv/dt电流还是edm电流相对不接地而言均显着减少,其原因是rc吸收高次谐波的作用更强,能够更好地改善电压波形。

6.在高频pwm脉冲输入下,电机内分布电容的电压耦合作用构成系统共模回路,从而引起轴电压与轴承电流问题。轴承电流主要以三种方式存在:dv/dt电流、edm电流和环路电流。轴电压的大小不仅与电机内各部分耦合电容参数有关,且与脉冲电压上升时间和幅值有关。本文着重讨论前两种方式的轴承电流。dv/dt电流主要与pwm的上升时间tr有关,tr越小dv/dt电流的幅值越大。逆变器载波频率越高,轴承电流中的dv/dt电流成分越多。edm电流出现存在一定的偶然性,只有当轴承润滑油层被击穿或者轴承内部发生接触才可能出现,其幅值主要取决于轴电压的大小。以降低脉冲电压上升率为原则,设计一种在逆变器输出端串小电感并辅以rc吸收网络达到抑制轴电压与轴承电流的目的,仿真结果验证了该方法的有效性。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

电力拖动逆向思维排故法的探索浅析

一、序言

电力拖动是机电专业一门必修课,在整个专业课中占有重要的一席之地。也是电气工作人员必须学习的一门专业知识。

所谓电力拖动简单一点说就是把电力能转换为机械能的一种转换方式和过程。其中包括:识图,绘图,选材,安装,排故等等。其中排故是电力拖动的核心部分,可以说掌握了电力拖动排故就等于掌握了电力拖动的精髓,因为排故需要识图,绘图,选材,安装四项技术的铺垫才可能达到敏捷的思维,准确的判断,快速排除。使故障在最短时间内消失,恢复电气系统正常运行的高手水准。

二、电力拖动故障解读

所谓的故障就是电路{系统}延失规定功能称为故障。包括硬故障,软故障和间歇性故障。

1、硬故障:又称为多发性故障,是由于电机,电器元件或导线,过载,短路,接地或者绝缘击穿,所引起的局部发热。火花,冒烟等症状。

2、软故障:又称为渐发型故障。多数是由于电器问题引起。如电器元件调整不当,机械动作失灵,线头接触不良或脱落引起的症状。

3、间歇性故障:是由于元件老化,容差不足,接触不良的因素造成的,只在某种情况下才表现出来的故障。

三、电力拖动的传统排故思维

1、排除法:根据状况判断是机械故障还是电气故障。例如:电磁阀不工作就要分清楚是阀门问题还是电磁线圈的问题,是让钳工还是让电工解决。

2、逻辑分析法;就是根据电气原理图的工作原理和电器元件的工作现象来判断故障面和故障点。其中有三种方法:

A,电阻法,就是用万用表的电阻档测量线路的各点,确定故障点。

B,电压法,就是用万用表的电压档测量线路的各点,确定故障点。

C,分段测量法,无论是电压法还是电阻法利用这两种方法去进行分段测量,先判断故障段再判断点。

四、逆向思维排故浅析

所谓的逆向思维排故就是不按照常规的思维方法,而是从另外的角度出发反过来想是哪里出现问题才会造成这样的结果。现仅举两例说明。

1、现在用一例家庭最常用的AC220V民用电故障说明问题,引入论证。

这是本人亲自碰到的案例.在一个220V的灯头上,用万用表测量有220V电压,用电笔测量火线有电,灯泡是好的,但是灯泡就是不亮,这岂不是很怪异?若从正面考虑只能说:这怎么可能?很难得出答案。那么从反面去思考呢?有可能是回路阻抗太大,当灯泡接上灯头时电流无法从回路中流过,所以灯泡无法发光。那么是哪里造成的阻抗大呢?是火线还是零线呢?火线?可能性不大,因为已经用电笔测试过火线有电。为了找到问题所在,为了证明是零线问题,我们另外接了一根零线,结果灯泡亮了。于是我们顺着原来的零线方向寻找下去,结果发现是零线断落在一片潮湿的朽叶上,故障找到了。那么为什么用万用表又可以测量出220V的电压呢?原来电压表是高内阻表,通过的电流微乎其微,所以可以测出电压。

而灯泡是个低阻负载,是要通过零线回到变压器中性线进行工作接地的,接地电阻要小于4欧姆。现在零线断落在地面上阻抗很大,不能形成回路电流无法通过,灯泡自然不亮。这就是逆向思维的一个例子。

2、请看:

故障现象;这是一块新安装的电拖板,试机时按下SB2时候,KM1交流接触器嘭,嘭,嘭不断地跳动,无法正常吸合。

这是一个电力拖动教程一个基础教案。是交流接触器触点互锁正反转控制的典型线路,前面的故障按照传统的思维方法用一定的时间可以找出问题所在,我不多加说明。那么按照逆向思维排故法应该怎样去判别呢?电器元件吸合有力,节奏感强,应该不是元件问题。那么一定是控制线路接错了,我们可以这样反过来想,怎样安装才能使试机时候出现这样的现象而且交流接触器触不能正常吸合呢?根据线路原理图分析只要把交流接触器触的常闭触点错误的窜接自身的回路中就能出现这样的现象。这就是逆向思维排故法。

那么上面所分析的故障原因到底是不是如此呢?我们再验证一下,再按一下SB3时候KM2交流接触器也嘭,嘭,嘭不断地跳动,无法正常吸合,这就说明很有可能我们的判断是正确的。再经过检测果然如此,KM1,KM2常闭触点相互接错了。问题解决了。

五、小结:

1、使用逆向思维排故法,能很快的确定故障点,大大的缩短故障排除时间,节约大量人力。

2、使用逆向思维排故法,要对该电气原理图以及工作原理了如指掌,这样才能灵活判断,准确定位。最好有一定的维修经验积累。

3、其实逆向思维排故法就融合在排除法和逻辑分析法中,人们在排故的时候会有意无意的用到它,只是人们平时不多加以总结而已。所有我在这里作一个小结,希望大家能灵活运用,立杆见影,举一反三。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

基于可靠性状态监控的电力拖动监理研究

电力拖动作为占据主导地位的动力系统,检修水平的高低直接控制着生产系统的运行水平,从而决定收益水平。通过对检修体制的分析和审视,以实例对比,分析检修体制监理方法,提出在线监测法,提高了电力拖动系统的可靠性。

拖动即指以各种原动机带动工作机械(负荷)产生并完成运动,电力拖动即以电力为原动力的拖动系统。在各产业中,电力拖动提供了90%以上的原动力,在生产流程中占据基础而重要的核心点位。EPRI(ElectricPowerResearchInstitute,美国电力研究协会)2011年的报告指出:全美电力拖动系统消耗了19%的总能源,57%的电力能源;制造业中电力拖动消耗了70%以上的电能;过程工业中电力拖动消耗的电能占90%以上。每年度成本核算中,附加消耗分布为停产损失93.6%,附加能量消耗3.1%,电力拖动寿命降低1.2%,常规消耗2.1%。状态检测新方法的提出,有益于进一步降低维护及衍射费用,提升生产效率。

1电力拖动系统设备检修体制衍射

1.1事后维修RM/BM

特点是:“任其损坏”Reactive(Break-Down)Maintenance。

优点体现在:不必投资在状态监测上,不会出现过度维修,适用于少数非重点设备。缺点为:无法预测事故停机,产生设备二次损坏及灾难性后果,生产损失,高额维修费用,管理失控。

1.2预防维修PM/TDM

要点在于“定期体检”PreventiveMaintenance。优点体现在维修以可控制的方式在方便的时间进行,减少意外事故,有效避免灾难性事故,可更好的控制备件,节约资金。缺点体现在状态良好的设备也被频繁检修(维修过盛),维修导致的损伤可能大于维修的益处,仍存在计划外故障停机,没有针对不同设备进行优化与寿命分析。

1.3预测维修PdM

预测维修即PredictiveMaintenance,要点在于“没有故障就不修”。优点在于:减少意外停机,仅在需要时购买和使用所需备件,只需在适当时候进行维修。缺点在于:监测仪器、系统、服务、人员花费,不能延长设备寿命。

1.4主动维修PAM

即ProactiveMaintenance,要点在于“查明根源,精确维修,一切基于可靠性”。优点在于:设备寿命延长,设备可靠性增加,更少的故障及二次损坏,停机时间减少,总维护费用降低。缺点在于:监测仪器、系统、服务、人员花费,要求特殊技能,需要更多时间进行分析,全体员工改变观念

2状态监测朝向

2.1当前状况分析

EPRI报告中指出:一个新的资产管理的平台提高生产能力,依靠运行在收支平衡之上,生产中断不可容忍,世界级的生产运营需要可靠性维护。对应的管理策略应为合理利用现有设备,增加生产速度提高质量,增加有效生产时间,降低成本。维修部门从单纯的维修,逐渐转变成为确保企业生产能力的高级职能单元,维修费用占企业生产总成本的4%到14%,维修费用所占比例大于企业利润率。故障停机异常昂贵,远远超过维修费用。

2.2状态监测的目的

保护系统(保障运行,避免事故造成二次损伤)——预知维修(提前预警,减少非计划停机事件)——故障诊断(指导维修进程,实施精密维修)——根源分析(有目的地提高设备可靠性)。

2.3案例分析

美国总统轮船公司2001年8月16日安装检修状态监控系统。2001年8月21日TC1轴承失效(已使用10,000小时)。在海上更换轴承,耽搁时间。二次损伤,造成叶片和迷宫密封损伤(价值$180,000)包括产量损失与人工费用。到达港口后,更换整个轴系,浪费时间。

同样在轮船公司的案例中,预测维修经济效益评估可知,VTR714轴承每套USD20,000to25,000;VTR714轴系每套USD120,000to150,000。已知更换轴承推荐时间为10,000小时(16个月),17条船,实行状态监测4年,轴承更换时间由10,000小时提高到20,000(有些轴承达到30,000小时)。总的价值体现为:17×3台涡轮增压器xUSD20,000=USD1,020,000,其中未计算节省时间与人工的效益及二次损伤费用

3RCM

RCM战略即StrategyforRCM,包括设计与改造、设备与备件采购、备品备件库存保养、安装调试、操作与日常保养、运行调度、维修维护。衍射流程为设备改造—提高运行寿命—状态监测日常维护保养—状态监测—有计划的停机—定期维修—备用策略—事后维修。

RCM手段(InstrumentforRCM)包括红外诊断静态/动态电气诊断、机械振动分析、激光对中/现场动平衡、润滑油品分析、超声诊断、腐蚀检测/探伤和实现静态检测、动态巡检、在线监控

RCM收益(BenefitfromRCM)主要有提高产量(2-40%),减少维修费用(7-60%),提高产品质量(重新回炉生产&废品率减少5-90%),延长设备寿命(>1-10xlifeextension),减少零配件库存(10-60%),增加库存周转率(upto75%),减少成品库存,降低能耗(5-15%),提升生产安全及环境保护。

4故障分布与测试

4.1故障分布

根据EPRI的报告:电力拖动故障的53%源于机械原因,如轴承故障、不平衡、松动等;47%源于电气原因;这其中,10%源于转子,如铸件缺陷导致的不平衡气隙、断条等;37%源于定子绕组。阻抗不平衡导致的电力拖动系统效率的降低。阻抗不平衡导致功率因数的降低。阻抗不平衡导致电力拖动损耗。阻抗不平衡导致温度上升。附加的温升导致电力拖动系统寿命的降低。

4.2电气测试

静态电气测试SET包括:欧姆表/毫欧表、绝缘电阻计(DA/PI)、

高压绝缘测试仪、LCR测试仪、浪涌测试仪、静态电路分析(MCA)。

动态电气测试DET包括:电压表、安培表、功率表、数据采集器、电源质量分析仪、动态效率仪。

其他还有动态电信号分析(ESA)、动态机械测试DMT、红外分析、振动分析、超声诊断。

5电力拖动监测与管理系统的建立

维修策略的优化通过监控点的系统建立得以实现预知维修与监测进程,需要以下为电力拖动状态监测的时间间隔,以月为单位。台湾麦寮电厂拥有7台600MW火力发电力拖动组2台,12MW柴油发电力拖动组(备用)。实现的技术服务有SPMIntroduction(1998)、CMS用于涡轮增压机(1998)、便携式仪器A30-3(1999)、诊断服务(2001)。现在装备4台A30-3,整体监控点数7600点,远程监控2100点,“VCM+BMS”56点,“MG4toAMStoPRO46”软件72点。下一步装备6台Leonova,远程监控1445点,“MG4toAMStoPRO46”136点。通过系统的故障检点监测成形,有效地实现了检修管理技术的提升。

6结束语

电力拖动系统中检修水平的提升,除了依托于设备管理人员的技术水平外,通过在线检测方法,以先进的检测检修管理技术可以实现更加优化的资源配置和生产效率。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

三要素基础上的电力拖动系统过渡建模问题研究

电力拖动系统实际工作环节中会出现一定的稳态过程或暂态过程,整个形式下的状态活动调整被视为过渡过程,是整个动态活动管路监察的主要衡量标准。涉及到电力拖动系统的惯性特征主要借助一定的机械惯性模式以及生产、传动、电动机的系统控制模式进行着一定程度的旋转,整个动力学原理的渗透前提下,面对内部拖动系统中的飞轮转矩以及转动惯量的数值变化,需要结合实际电动机的绕组以及电气控制中的电感量等进行深入的研究,同时对于后续的热力惯性的反映效果以及参数变化也需要进行系统的观察和研究,以满足整个活动程序下的标准数据建模水准。

1电力拖动系统的三种惯性

在电力拖动系统的实际工作中,总会出现加速或是减速运动的过程,而两种运动状态的转变过程中,会出现三种形式的惯性,包括机械惯性、电磁惯性和热力惯性等。但是,在实际的研究中发现,真正对电力拖动系统由重大影响作用的是机械惯性,而电磁惯性和热力惯性可以忽略不计。

1.1机械惯性

机械惯性对于电力拖动系统来说,其存在的最主要问题是在运动状态转变的过程中,不能够实现电力拖动系统转速的突变,使运动状态出现延迟。机械惯性主要存在于生产机械设备的工作运行中、传动装置的工作运行中、电动机的工作运行中以及旋转设备等工作运行中。机械惯性在电力拖动系统中,主要是通过飞轮转矩或是转动惯量的数量大小来进行反映的。

1.2磁力惯性

电磁惯性对于电力拖动系统来说,因为该惯性对系统的影响很小,通常可以忽略不计。其主要原因是,在电力拖动系统中,电磁惯性主要是通过电动机绕组在工作运行中和电控装置等在工作运行中,自感和互感所产生的惯性。这种惯性与机械惯性相比,对系统的影响很小,所以在分析和计算中往往可以忽略这种惯性对系统所产生的影响。

1.3热力惯性

热力惯性对于电力拖动系统来说,其惯性对系统的影响也很小,通常也可忽略不计。其主要原因是,在电力拖动系统中,电磁惯性主要是通过电机在工作运行中和控制装置等在工作运行中,由于温度的变化致使设备的一些参数发生变化,从而产生热力惯性。在设备运行中所产生的热力惯性是很大的,但是在工作运行状态下,设备运行的动态过程很快,所以热力惯性对于系统的影响很小,所以在分析和计算中往往可以忽略这种惯性对系统所产生的影响。因此,在研究和分析电力拖动系统的惯性时,一般只考虑机械惯性对系统所产生的影响。

2阶段性电路暂态作用下的“三要素”法原理

在线性电路内部的专有储能元件或是可看做是储能元件,无论是简单还是复杂,都需要进行一阶常系数性微分方程的处理,这种电路系统结构被称为一阶线性电路。在一阶性电路中,电路的响应一般包括两个部分,暂态和稳态两个分量。可写成一般式:

在这个一般式中,是稳态分量,而是暂态分量;是电流、电压或转矩等。如果该一般式的初始值是的话,则可以得到A=-。代入到一般式中:

这个一般式是一阶线性电路在暂态状态下的一般公式,可对应任意变量。在一般式中,只要求出式中的是的初始值、是的稳态值和是过渡时间常数,这三个要素,就可以得到电路响应的电流值、电压值和转矩值等。

结合实际电路的响应主要是根据暂态分量以及稳态分量的分布状态进行分析,进行一阶线性电路暂态过程中的任意变量统计过程中,根据实际内部的电流、电压以及转矩三个要素具体值进行电路响应的回馈,结合初始值和稳态值的分布规律进行过渡过程时间常数的应用。

3直流拖动系统过渡过程的数学模型建立

本文在研究直流电力拖动系统的过渡过程中,将以他励直流额电动机为例来进行分析。

3.1电磁转矩的动态方程式

该式中,T2是稳态转矩;Tεm是电磁转矩。

经过直流电动机拖动系统作用模式的深入研究,实现内部数据在整个动态方程式的应用分析。在进行电磁转矩计算中,主要利用三个要素进行动态方程的建立:

该式中,TQ是初始转矩;是时间常数。

3.2电流的动态方程式

该式中,Iz是稳态电流;Ia是电枢电流。

经过直流电动机拖动系统作用模式的深入研究,实现内部数据在整个动态方程式的应用分析。在进行电流计算中,主要利用三个要素进行动态方程的建立:

该式中,IQ是初始电流。

3.3转速的动态方程式

经过直流电动机拖动系统作用模式的深入研究,实现内部数据在整个动态方程式的应用分析。在进行电动机转速的计算中,主要利用三个要素进行动态方程的建立:

该式中,n是稳态转速;nz是电动机的转速;nQ是初始转速。

利用整个要素的恒定效应计算,可以引进电枢电流以及实际转速的动态方程计算方式,对于不同数据的动态方程式的表达对于整个一阶线性电路的过渡过程的数学模型建立有着一定的指导作用,实现后期的直流电动机电枢回路串电阻过渡过程内部流程曲线图的标准制定,保证相关数据的提供标准形式。

4交流拖动系统过渡过程中的相关数学模型的建立与分析

本文在研究交流拖动系统过渡过程中,将以绕线式异步电动机转子回路串电阻作为示例进行研究。通过一定程度的绕线式异步电动机内部的实际转子回路电阻值的观察与研究,结合绕线的分折异步处理进行过渡过程的分解,实际机械化特性模式作用下的主要直线操作手法结合实际机械特性的曲线进行直流电动机相似流程的处理与作业流程,实现后续涉及具体机械特性方程的实用公式:该式中,是临界转矩;是临界转差率。

将该方程式进行简化,可得到:

电力拖动系统的运动方程式已知:

对此,同样可以运用“三要素”法来求出交流电力拖动系统的数学模型:

根据:

可以得到:

利用电流内部设备结构的临界转矩以及临界转差率的提供进行具体的简化,以保证整个活动过程的系统建模数据的标准参考价值,节省一定的时间和计量工作分配程序,使得具体检验的落实工作在相对严格的标准下充分进行。

5总结

综上所述,本文通过一阶线性电路的“三要素”法对电力拖动系统过渡过程进行了建模实践。这个“三要素”法不仅适用于电力拖动系统过渡过程的应用,还同样可适用于其他的电力设备的工作运行中,譬如像电动机的启动、制动和调速等机械动态转变的过渡过程情况中。“三要素”法所建立起来的数学模型,具有简单、快捷和清晰等优点,非常适用于工程计算。在他励直流、并励直流的电动机的工作和运行中,可以知道电磁的转矩与电枢的电流是呈现正比的关系,其过渡过程的电枢电流的表达式是符合“三要素”法所建立的数学模型的。但是,在串励直流和复励直流的电动机的工作和运行中,电磁的转矩和电枢的电流并不是正比的关系,其过渡过程的电枢电流表达式不符合“三要素”法所建立的数学模型,所以不能够用“三要素”法来建立数学模型。在交流电动机的工作和运行中,当转子功率因素不变时,其电磁的转矩与转子的电流之间是呈现正比的关系,其过渡过程的转子电流的表达式是符合“三要素”法所建立的数学模型的。所以,可以采用“三要素”法来进行数学模型的建立。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接